Material Parameters Dependency of Stress-Strain Curve Based on the Crystal Plasticity Finite Element Method Incorporating Non-Crystalline Shear Band Mechanism

Article Preview

Abstract:

The crystal plasticity finite element method (CPFEM) has emerged as an important method for studying materials on a mesoscopic scale. However, a significant obstacle to the application of CPFEM is the numerous material parameters associated with it. This study selected a physics-based CPFEM incorporating the non-crystalline shear band formation mechanism as it can stimulate both work-hardening and strain-softening mechanisms. A three-dimensional smooth specimen model was established to simulate the tensile test. The effects of six fitting crystal plasticity material parameters on the yielding stress, work-hardening behavior, and strain localization behavior are. In addition, the influencing mechanisms are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

87-92

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng. A. 395 (2005) 338–349.

Google Scholar

[2] N. Kamikawa, T. Sakai, N. Tsuji, Acta Mater. 55 (2007) 5873–5888.

Google Scholar

[3] J. Hirsch, T. Al-Samman, Acta Mater. 61 (2013) 818–843.

Google Scholar

[4] A.P. Boresi, R.J. Schmidt, O.M. Sidebottom, Wiley New York, (1985).

Google Scholar

[5] M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, M. Knezevic, Int. J. Plast. 83 (2016) 90–109.

Google Scholar

[6] J. Segurado, J. Llorca, Comput. Mater. Sci. 76 (2013) 3–11.

Google Scholar

[7] M. Bertin, C. Du, J.P.M. Hoefnagels, F. Hild, Acta Mater. 116 (2016) 321–331.

Google Scholar

[8] D. Raabe, D. Ma, F. Roters, Acta Mater. 55 (2007) 4567–4583.

Google Scholar

[9] A.A. Salem, S.R. Kalidindi, S.L. Semiatin, Acta Mater. 53 (2005) 3495–3502.

Google Scholar

[10] A.S. Khan, J. Liu, J.W. Yoon, R. Nambori, Int. J. Plast. 67 (2015) 39–52.

Google Scholar

[11] W. Woo, V.T. Em, E.Y. Kim, S.H. Han, Y.S. Han, S.H. Choi, Acta Mater. 60 (2012) 6972–6981.

Google Scholar

[12] W.G. Feather, D.J. Savage, M. Knezevic, Int. J. Plast. 143 (2021) 103031.

Google Scholar

[13] H. Lim, et al., J. Mech. Phys. Solids. 74 (2015) 80–96.

Google Scholar

[14] S. Breumier, S. Sao-Joao, A. Villani, M. Lévesque, G. Kermouche, Mater. Des. 193 (2020) 108789.

DOI: 10.1016/j.matdes.2020.108789

Google Scholar

[15] W. Li, S Hamada, H Noguchi, Fatigue Fract Eng Mater Struct. 45 (2022) 1406–1420.

Google Scholar

[16] F. Roters, et al., Procedia IUTAM. 3 (2012) 3–10.

Google Scholar

[17] N. Jia, F. Roters, P. Eisenlohr, C. Kords, D. Raabe, Acta Mater. 60 (2012) 1099–1115.

DOI: 10.1016/j.actamat.2011.10.047

Google Scholar

[18] N. Jia, P. Eisenlohr, F. Roters, D. Raabe, X. Zhao, Acta Mater. 60 (2012) 3415–3434.

DOI: 10.1016/j.actamat.2012.03.005

Google Scholar

[19] F. Roters, et al., Comput. Mater. Sci. 158 (2019) 420–478.

Google Scholar

[20] N. Jia, D. Raabe, X. Zhao, Acta Mater. 76 (2014) 238–251.

Google Scholar

[21] L Kubin, B Devincre B, T Hoc, Acta Mater. 56 (2008) 6040-6049.

Google Scholar

[22] S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, Acta Mater. 118 (2016) 140–151.

DOI: 10.1016/j.actamat.2016.07.032

Google Scholar

[23] T Takeuchi. Trans Jpn Inst Met. 17 (1976) 313-321.

Google Scholar