[1]
J. Jiang, G. Xiao, Y. Wang, Y. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state, J. of Alloys & Comp. 784 (2019) 394-404.
DOI: 10.1016/j.jallcom.2019.01.093
Google Scholar
[2]
C.N. Athreya, K. Deepak, Dong-Ik Kim, B. de Boer, S. Mandal, V.S. Sarma, Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617, J. of Alloys & Comp. 778 (2019) 224-233.
DOI: 10.1016/j.jallcom.2018.11.137
Google Scholar
[3]
J. Cao, J. Zhang, R. Chen, Y. Ye, Y. Hua, High temperature oxidation behavior of Ni-based superalloy GH202, Mater. Charac. 118 (2016) 122-128.
DOI: 10.1016/j.matchar.2016.05.013
Google Scholar
[4]
L.J. Chen, P.K. Liaw, H. Wang, Y.H. He, R.L. McDaniels, L. Jiang, B. Yang, D.L. Klarstrom, Cyclic deformation behavior of HAYNES® HR-120® superalloy under low-cycle fatigue loading, Mech. of Mater. 36 (1-2) (2004) 85-98.
DOI: 10.1016/s0167-6636(03)00033-4
Google Scholar
[5]
B.R. Barnard, P.K. Liaw, R.A. Buchanan, D.L. Klarstrom, Affects of applied stresses on the isothermal and cyclic high-temperature oxidation behavior of superalloys, Mater. Sci. & Eng.: A. 527 (16-17) (2010) 3813-3821.
DOI: 10.1016/j.msea.2010.03.050
Google Scholar
[6]
N. Parimin, E. Hamzah, Oxidation kinetics of Fe-Ni-Cr Alloy at 900 °C, Mater. Sci. Forum 1010 (2020) 58-64.
DOI: 10.4028/www.scientific.net/msf.1010.58
Google Scholar
[7]
N. Parimin, E. Hamzah, Effect of solution treatment temperature on the microstructure of Fe-33Ni-19Cr alloy, Mater. Sci. Forum 1010 (2020) 21-27.
DOI: 10.4028/www.scientific.net/msf.1010.21
Google Scholar
[8]
N. Parimin, E. Hamzah, Influence of Solution Treatment Temperature on the Microstructure of Ni-based HR-120 Superalloy, IOP Conf. Ser.: Mater. Sci. Eng. 957 (2020) 012003.
DOI: 10.1088/1757-899x/957/1/012003
Google Scholar
[9]
L. Tan, Corrosion behavior of Ni-base alloys foe advanced high temperature water-cooled nuclear plants, Cor. Sci. 50 (11) (2008) 3056-3062.
DOI: 10.1016/j.corsci.2008.08.024
Google Scholar
[10]
A.M. de Sousa Malafaia, M.F. de Oliveira, Anomalous cyclic oxidation behaviour of a Fe-Mn-Si-Cr-Ni shape memory alloy, Cor. Sci. 119 (2017) 112-117.
DOI: 10.1016/j.corsci.2017.02.026
Google Scholar
[11]
D. Saber, I.S. Emam, R. Abdel-Karim, High temperature cyclic oxidation of Ni based superalloys at different temperatures in air, J. of Alloys & Comp. 719 (2017) 133-141.
DOI: 10.1016/j.jallcom.2017.05.130
Google Scholar
[12]
N. Parimin, E. Hamzah, High temperature cyclic oxidation of Ni-based 800H superalloy at 700°C, IOP Conf. Ser.: Mater. Sci. Eng. 957 (2020) 012013.
DOI: 10.1088/1757-899x/957/1/012013
Google Scholar
[13]
N. Birks, G.H. Meier, F.S. Petit, Introduction to the high-temperature oxidation of metals, second ed., Cambridge University Press, United Kingdom, (2006).
Google Scholar
[14]
J. Zurek, D.J. Young, E. Essuman, M. Hansel, H.J. Penkalla, L. Niewolak, W.J. Quadakkers, Growth and adherence of chromia based surface scales in NI-base alloys in HIgh- and Low-pO2 gases, Mater. Sci. Eng. A 477 (2008) 259-270.
DOI: 10.1016/j.msea.2007.05.035
Google Scholar
[15]
D.J. Young, J. Zurek, L. Singheiser, W.J. Quadakkers, Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O, Corros. Sci. 53 (2011) 2131-2134.
DOI: 10.1016/j.corsci.2011.02.031
Google Scholar
[16]
L. Tan, X. Ren, K. Sridharan, T.R. Allen, Effect of shot-peening on the oxidation of Alloy 800H exposed to supercritical water and cyclic oxidation, Corros. Sci. 50 (2008) 2040-2046.
DOI: 10.1016/j.corsci.2008.04.008
Google Scholar