Synthesis of Nano Ceramic Epoxy Hybrid Composite Coating on Metallic Substrate for Corrosion Protection

Article Preview

Abstract:

In this study, the corrosion protection behavior of fumed SiO2 reinforced epoxy composite coatings applied on steel substrates was evaluated and compared to graphene-epoxy nano-composite coatings. Graphene-epoxy nano-composite coatings provide excellent corrosion protection but the uniform dispersion of graphene in polymer solvent is a challenge. So, the fumed silica was chosen as the reinforcement rather than graphene. Fumed silica was treated with stearic acid and used with epoxy to get hydrophobic and corrosion resistant coatings. The partial carburization of epoxy was carried out to get carbon layer on steel substrate. The epoxy was cured at various temperatures (200, 250 and 300 °C) to see its effect on hydrophobicity and corrosion behavior of the composite coatings. Presence of different functional groups of modified silica and epoxy was confirmed by FTIR ATR. Coating prepared from this material was evaluated microscopically with respect to structure, uniformity and interface with optical microscope. Polarization effect of coatings was studied by potentiodynamic polarization method. Coating thickness was measured by an Elcometer gauge, and these were checked by the micrographs at 50, 200 and 1000x. E250 (60% epoxy + 6% Silica) showed corrosion rate of 0.017mpy much lower than uncoated steel substrate (2.612mpy). Contact angles for npc200 (neat partially carburized epoxy cured at 200°), 4Si70 (60% epoxy+4% Silica cured at 70°), 6Si300 (60% epoxy+6% Silica cured at 300°) and 6Si250 (60% epoxy+6% Silica cured at 250°) were 90°, 89.5°, 72.5° , 97.5° respectively. So, it was proved that partially carburized epoxy coating with 6% modified silica cured at 250 °C was more corrosion resistant and hydrophobic in nature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 336)

Pages:

49-59

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Matin, M.M. Attar, B. Ramezanzadeh, Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate, Prog. Org. Coatings, 78 (2015) 395–403.

DOI: 10.1016/j.porgcoat.2014.07.004

Google Scholar

[2] P. Roberge, Handbook of corrosion engineering, Choice Rev. Online, 37 (2000) 37-5122-37–5122.

DOI: 10.5860/choice.37-5122

Google Scholar

[3] X. Wang, Z. Lin, Robust, hydrophobic anti-corrosion coating prepared by PDMS modified epoxy composite with graphite nanoplatelets/nano-silica hybrid nanofillers, Surf. Coatings Technol., 421 (2021).

DOI: 10.1016/j.surfcoat.2021.127440

Google Scholar

[4] M. Arun, S. Kantheti, R.R. Gaddam, R. Narayan, K.V.S.N. Raju, Surface modification of TiO2 nanoparticles with 1,3,5-triazine based silane coupling agent and its cumulative effect on the properties of polyurethane composite coating, J. Polym. Res., 21 (2014).

DOI: 10.1007/s10965-014-0600-7

Google Scholar

[5] H. Leidheiser, CORROSION OF PAINTED METALS - A REVIEW, Corrosion, 38 (1982) 374–383.

DOI: 10.5006/1.3581899

Google Scholar

[6] Y. González-García, S. González, R.M. Souto, Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection, Corros. Sci., 49 (2007) 3514–3526.

DOI: 10.1016/j.corsci.2007.03.018

Google Scholar

[7] G.W. Walter, A critical review of the protection of metals by paints, Corros. Sci., 26 (1986) 27–38.

Google Scholar

[8] E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements-II Water uptake of coatings, Corros. Sci., 36 (1994) 957–977.

DOI: 10.1016/0010-938x(94)90197-x

Google Scholar

[9] M.M. Popović, B.N. Grgur, V.B. Mišković-Stanković, Corrosion studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution, in: Prog. Org. Coatings, 2005: p.359–365.

DOI: 10.1016/j.porgcoat.2004.05.009

Google Scholar

[10] M. Barletta, L. Lusvarghi, F.P. Mantini, G. Rubino, Epoxy-based thermosetting powder coatings: Surface appearance, scratch adhesion and wear resistance, Surf. Coatings Technol., 201 (2007) 7479–7504.

DOI: 10.1016/j.surfcoat.2007.02.017

Google Scholar

[11] B. Qi, T.P. Yao, Y.D. Zhang, H.K. Shang, Endowing the sustainable antistatic properties to epoxy-based composites through adding graphene nanoplatelets, J. Clean. Prod., 281 (2021).

DOI: 10.1016/j.jclepro.2020.124594

Google Scholar

[12] D.E. Tallman, G. Spinks, A. Dominis, G.G. Wallace, Electroactive conducting polymers for corrosion control: Part 1 General introduction and a review of non-ferrous metals, J. Solid State Electrochem., 6 (2002) 73–84.

DOI: 10.1007/s100080100212

Google Scholar

[13] S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, G. Madras, Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings, Electrochim. Acta, 54 (2009) 1249–1254.

DOI: 10.1016/j.electacta.2008.08.069

Google Scholar

[14] N.K. Lape, E.E. Nuxoll, E.L. Cussler, Polydisperse flakes in barrier films, J. Memb. Sci., 236 (2004) 29–37.

DOI: 10.1016/j.memsci.2003.12.026

Google Scholar

[15] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Reports, 28 (2000) 1–63.

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[16] D.J. Chaiko, A.A. Leyva, Thermal transitions and barrier properties of olefinic nanocomposites, Chem. Mater., 17 (2005) 13–19.

DOI: 10.1021/cm0302680

Google Scholar

[17] H. Shi, F. Liu, L. Yang, E. Han, Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2, Prog. Org. Coatings, 62 (2008) 359–368.

DOI: 10.1016/j.porgcoat.2007.11.003

Google Scholar

[18] X. Zhang, F. Wang, Y. Du, Effect of nano-sized titanium powder addition on corrosion performance of epoxy coatings, Surf. Coatings Technol., 201 (2007) 7241–7245.

DOI: 10.1016/j.surfcoat.2007.01.042

Google Scholar

[19] S.K. Dhoke, A.S. Khanna, T.J.M. Sinha, Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings,, Prog. Org. Coatings, 64 (2009) 371–382.

DOI: 10.1016/j.porgcoat.2008.07.023

Google Scholar

[20] J. Xu, J. Tao, S. Jiang, Z. Xu, Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer, Appl. Surf. Sci., 254 (2008) 4036–4043.

DOI: 10.1016/j.apsusc.2007.12.039

Google Scholar

[21] Trinh Anh Truc, To Thi Xuan Hang, Vu Ke Oanh, E. Dantras, C. Lacabanne, D. Oquab, N. Pébère, Incorporation of an indole-3 butyric acid modified clay in epoxy resin for corrosion protection of carbon steel, Surf. Coatings Technol., 202 (2008) 4945–4951.

DOI: 10.1016/j.surfcoat.2008.04.092

Google Scholar

[22] R. Krishnamoorti, R.A. Vaia, Polymer nanocomposites, J. Polym. Sci. Part B Polym. Phys., 45 (2007) 3252–3256.

DOI: 10.1002/polb.21319

Google Scholar

[23] C.H. Chang, T.C. Huang, C.W. Peng, T.C. Yeh, H.I. Lu, W.I. Hung, C.J. Weng, T.I. Yang, J.M. Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon N. Y., 50 (2012) 5044–5051.

DOI: 10.1016/j.carbon.2012.06.043

Google Scholar

[24] J.R. Beryl, J.R. Xavier, A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nanoclay on mild steel in chloride environment, J. Polym. Res., 28 (2021).

DOI: 10.1007/s10965-021-02512-2

Google Scholar

[25] F. Branda, F. Tescione, V. Ambrogi, D. Sannino, B. Silvestri, G. Luciani, A. Costantini, A new extra situ sol-gel route to silica/epoxy (DGEBA) nanocomposite A DTA study of imidazole cure kinetic, Polym. Bull., 66 (2011) 1289–1300.

DOI: 10.1007/s00289-010-0429-0

Google Scholar

[26] F. Mustata, N. Tudorachi, D. Rosu, Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A, Compos. Part B Eng., 42 (2011) 1803–1812.

DOI: 10.1016/j.compositesb.2011.07.003

Google Scholar

[27] S. Ahmad, A.P. Gupta, E. Sharmin, M. Alam, S.K. Pandey, Synthesis, characterization and development of high performance siloxane-modified epoxy paints, Prog. Org. Coatings, 54 (2005) 248–255.

DOI: 10.1016/j.porgcoat.2005.06.013

Google Scholar

[28] H. Shi, F. Liu, L. Yang, E. Han, Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2, Prog. Org. Coatings, 62 (2008) 359–368.

DOI: 10.1016/j.porgcoat.2007.11.003

Google Scholar

[29] E. Bakhshandeh, A. Jannesari, Z. Ranjbar, S. Sobhani, M.R. Saeb, Anti-corrosion hybrid coatings based on epoxy-silica nano-composites: Toward relationship between the morphology and EIS data, Prog. Org. Coatings, 77 (2014) 1169–1183.

DOI: 10.1016/j.porgcoat.2014.04.005

Google Scholar

[30] R.A. Dubois, P.S. Sheih, Fundamental studies of epoxy resins for can and coil coatings III Effect of bisphenol structure on resin and coating flexibility, J. Coatings Technol., 64 (1992) 51–57.

Google Scholar

[31] M.T. Rodríguez, J.J. Gracenea, S.J. García, J.J. Saura, J.J. Suay, Testing the influence of the plasticizers addition on the anticorrosive properties of an epoxy primer by means of electrochemical techniques, Prog. Org. Coatings, 50 (2004) 123–131.

DOI: 10.1016/j.porgcoat.2004.01.003

Google Scholar

[32] S.J. García, J. Suay, Epoxy powder clearcoats used for anticorrosive purposes cured with ytterbium III trifluoromethanesulfonate, Corrosion, 63 (2007) 379–390.

DOI: 10.5006/1.3278391

Google Scholar

[33] G. Ruhi, H. Bhandari, S.K. Dhawan, Designing of corrosion resistant epoxy coatings embedded with polypyrrole/SiO2 composite, Prog. Org. Coatings, 77 (2014) 1484–1498.

DOI: 10.1016/j.porgcoat.2014.04.013

Google Scholar

[34] E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemán, Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint, Corros. Sci., 50 (2008) 721–728.

DOI: 10.1016/j.corsci.2007.10.006

Google Scholar

[35] S. Radhakrishnan, N. Sonawane, C.R. Siju, Epoxy powder coatings containing polyaniline for enhanced corrosion protection, Prog. Org. Coatings, 64 (2009) 383–386.

DOI: 10.1016/j.porgcoat.2008.07.024

Google Scholar

[36] S.H. Ahn, S.H. Kim, S.G. Lee, Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6-naphthalate), J. Appl. Polym. Sci., 94 (2004) 812–818.

DOI: 10.1002/app.21007

Google Scholar

[37] J. Choi, A.F. Yee, R.M. Laine, Organic/inorganic hybrid composites from cubic silsesquioxanes Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane, Macromolecules, 36 (2003) 5666–5682.

DOI: 10.1021/ma030172r

Google Scholar

[38] J.M. Yeh, C.L. Chen, Y.C. Chen, C.Y. Ma, H.Y. Huang, Y.H. Yu, Enhanced Corrosion Prevention Effect of Polysulfone-Clay Nanocomposite Materials Prepared by Solution Dispersion, J. Appl. Polym. Sci., 92 (2004) 631–637.

DOI: 10.1002/app.13435

Google Scholar

[39] D. Tiab, E.C. Donaldson, Wettability, Petrophysics, (2012) 371–418.

DOI: 10.1016/b978-0-12-383848-3.00006-2

Google Scholar

[40] M. Moradi Kooshksara, S. Mohammadi, Investigation of the in-situ solvothermal reduction of multi-layered Graphene oxide in epoxy coating by acetonitrile on improving the hydrophobicity and corrosion resistance, Prog. Org. Coatings, 159 (2021).

DOI: 10.1016/j.porgcoat.2021.106432

Google Scholar