Influence of Laser Energies on the Generation of Cobalt Oxide Nanoparticles via Laser Ablation in Liquid

Article Preview

Abstract:

Nanoparticles fabrication using pulsed laser synthesis is considered a straightforward, reliable, and green approach for the fabrication of nanomaterials. In this study, cobalt oxide (CoO) nanoparticles were synthesized from cobalt targets using pulsed laser ablation inside a 10% v/v ethanol solution. This study examined the effect of the laser energies on the size and morphology of CoO nanoparticles. The size, morphology of the fabricated nanomaterials were studied using transmission electron microscopy (TEM), and their optical properties were obtained using ultraviolet-visible (UV-Vis) spectroscopy. Uniform size distribution of nanoparticles with diameters less than 60 nm was observed at 30, 45, and 60 mJ. The optimum condition at which the CoO nanoparticles are fabricated with a narrower size distribution was reported, which would be helpful in several applications such as electronic thin film, pigments and dyes, capacitors, gas sensors, and lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 336)

Pages:

69-74

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

DOI: 10.1038/nmat1368

Google Scholar

[2] Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chem. Rev. 2015, 115, 5159–5223.

DOI: 10.1021/cr5006217

Google Scholar

[3] Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 2010, 4, 3580–3590.

DOI: 10.1021/nn100866w

Google Scholar

[4] Wang, X.; Feng, J.; Bai, Y.; Zhang, Q.; Yin, Y. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chem. Rev. 2016, 116, 10983–11060,.

DOI: 10.1021/acs.chemrev.5b00731

Google Scholar

[5] Ding, Y.; Zhou, P.; Han, T.; Liu, J. Environmentally Friendly and Cost-Effective Synthesis of Carbonaceous Particles for Preparing Hollow SnO2 Nanospheres and their Bifunctional Li-Storage and Gas-Sensing Properties. Crystals 2020, 10, 231,.

DOI: 10.3390/cryst10030231

Google Scholar

[6] Papis, E.; Rossi, F.; Raspanti, M.; Dalle-Donne, I.; Colombo, G.; Milzani, A.; Bernardini, G.; Gornati, R. Engineered cobalt oxide nanoparticles readily enter cells. Toxicol. Lett. 2009, 189, 253–259,.

DOI: 10.1016/j.toxlet.2009.06.851

Google Scholar

[7] Hu, S.; Melton, C.; Mukherjee, D. A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys. Chem. Chem. Phys. 2014, 16, 24034–24044,.

DOI: 10.1039/c4cp03018d

Google Scholar

[8] Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046.

DOI: 10.1039/c2cp42895d

Google Scholar

[9] Tsuji, T.; Hamagami, T.; Kawamura, T.; Yamaki, J.; Tsuji, M. Laser ablation of cobalt and cobalt oxides in liquids: Influence of solvent on composition of prepared nanoparticles. Appl. Surf. Sci. 2005, 243, 214–219,.

DOI: 10.1016/j.apsusc.2004.09.065

Google Scholar

[10] Alheshibri, M.; Akhtar, S.; Al Baroot, A.; Elsayed, K.; Al Qahtani, H.S.; Drmosh, Q.A. Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviromen. Arab. J. Chem. 2021, 14, 103317,.

DOI: 10.1016/j.arabjc.2021.103317

Google Scholar

[11] Rawat, R.; Tiwari, A.; Arun, N.; Rao, S.V.S.N.; Pathak, A.P.; Rao, S.V.; Tripathi, A. Synthesis of CuO hollow nanoparticles using laser ablation: effect of fluence and solvents. Appl. Phys. A 2020, 126, 226,.

DOI: 10.1007/s00339-020-3403-1

Google Scholar

[12] Mangababu, A.; Sarang Dev, G.; Chandu, B.; Bharati, M.S.S.; Venugopal Rao, S.; Nageswara Rao, S.V.S. Structural investigations of picosecond laser ablated GaAs nanoparticles in different liquids. Nano-Structures and Nano-Objects 2020, 23, 100509,.

DOI: 10.1016/j.nanoso.2020.100509

Google Scholar

[13] Mintcheva, N.; Aljulaih, A.; Wunderlich, W.; Kulinich, S.; Iwamori, S. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials (Basel). 2018, 11, 1127,.

DOI: 10.3390/ma11071127

Google Scholar

[14] Elsayed, K.A.; Imam, H.; Ahmed, M.A.; Ramadan, R. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid. Opt. Laser Technol. 2013, 45, 495–502,.

DOI: 10.1016/j.optlastec.2012.06.004

Google Scholar

[15] Athar, T.; Hakeem, A.; Topnani, N.; Hashmi, A. Wet Synthesis of Monodisperse Cobalt Oxide Nanoparticles. ISRN Mater. Sci. 2012, 2012, 1–5,.

DOI: 10.5402/2012/691032

Google Scholar

[16] Xaba, T.; Mokgoera, L.; Nate, Z.; Shumbula, P.M.; Africa, S.; Division, A.M.; Africa, S. Synthesis and characterization of cubic structured cobalt oxide nanoparticles capped with topo through the decomposition of Bis( N-Cyclohexyl-1-Naphtaldeydato) Cobalt ( II ) complex as a single source precursor. Dig. J. Nanomater. Biostructures 2018, 13, 1141–1147.

Google Scholar

[17] Gondal, M.A.; Drmosh, Q.A.; Yamani, Z.H.; Saleh, T.A. Synthesis of ZnO 2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 2009, 256, 298–304,.

DOI: 10.1016/j.apsusc.2009.08.019

Google Scholar