[1]
D. Giliopoulos, A. Zamboulis, D. Giannakoudakis, D. Bikiaris, and K. Triantafyllidis, Polymer/metal-organic framework (MOF) nanocomposites for biomedical applications,, Molecules, vol. 25, no. 1. MDPI AG, Jan. 01, 2020.
DOI: 10.3390/molecules25010185
Google Scholar
[2]
W. A. Amer et al., Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications,, ChemSusChem, vol. 13, no. 6, p.1629–1636, Mar. 2020,.
DOI: 10.1002/cssc.201901436
Google Scholar
[3]
G. A. Haghighat et al., Zeolitic imidazolate frameworks (ZIFs) of various morphologies against monochrome black-T (EBT): Optimizing the key physicochemical features by process modeling,, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 606, Dec. 2020,.
DOI: 10.1016/j.colsurfa.2020.125391
Google Scholar
[4]
Y. Liu et al., The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment,, Chemical Engineering Journal, vol. 417. Elsevier B.V., Aug. 01, 2021.
DOI: 10.1016/j.cej.2020.127914
Google Scholar
[5]
S. M. Flihh and S. H. Ammar, Fabrication and photocatalytic degradation activity of core/shell ZIF-67@CoWO4@CoS heterostructure photocatalysts under visible light,, Environmental Nanotechnology, Monitoring, and Management, vol. 16, Dec. 2021,.
DOI: 10.1016/j.enmm.2021.100595
Google Scholar
[6]
Z. Huang et al., Stable core-shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution,, Journal of Materials Research, vol. 36, no. 3, p.602–614, Feb. 2021,.
DOI: 10.1557/s43578-021-00117-5
Google Scholar
[7]
B. P. Biswal, D. B. Shinde, V. K. Pillai, and R. Banerjee, Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning,, Nanoscale, vol. 5, no. 21, p.10556–10561, Nov. 2013,.
DOI: 10.1039/c3nr03511e
Google Scholar
[8]
S. S. Sankar, K. Karthick, K. Sangeetha, A. Karmakar, and S. Kundu, Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review,, ACS Omega, vol. 5, no. 1. American Chemical Society, p.57–67, Jan. 14, 2020.
DOI: 10.1021/acsomega.9b03615
Google Scholar
[9]
K. S. Park et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,, Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, p.10186–10191, Jul. 2006,.
DOI: 10.1073/pnas.0602439103
Google Scholar
[10]
B. Wang, A. P. Côté, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs,, Nature, vol. 453, no. 7192, p.207–211, May 2008,.
DOI: 10.1038/nature06900
Google Scholar
[11]
A. Zanon and F. Verpoort, Metals@ZIFs: Catalytic applications and size-selective catalysis,, Coordination Chemistry Reviews, vol. 353. Elsevier B.V., p.201–222, Dec. 15, 2017.
DOI: 10.1016/j.ccr.2017.09.030
Google Scholar
[12]
K. Zhang, H. Shang, B. Li, Z. Wang, Y. Lu, and X. Wang, Structural design of metal catalysts based on ZIFs: From nanoscale to the atomic level,, Nano Select, vol. 2, no. 10, p.1902–1925, Oct. 2021,.
DOI: 10.1002/nano.202100009
Google Scholar
[13]
S. Ahmed, J. Shim, H. J. Sun, and G. Park, Transition Metals (Co or Ni) Encapsulated in Carbon Nanotubes Derived from Zeolite Imidazolate Frameworks (ZIFs) as Bifunctional Catalysts for the Oxygen Reduction and Evolution Reactions,, Physica Status Solidi (A) Applications and Materials Science, vol. 217, no. 12, Jun. 2020,.
DOI: 10.1002/pssa.201900969
Google Scholar
[14]
Y. Liu, E. Hu, E. A. Khan, and Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture,, Journal of Membrane Science, vol. 353, no. 1–2, p.36–40, 2010,.
DOI: 10.1016/j.memsci.2010.02.023
Google Scholar
[15]
S. N. Eustis et al., Electron-driven acid-base chemistry: Proton transfer from hydrogen chloride to ammonia,, Science, vol. 319, no. 5865, p.936–939, Feb. 2008,.
DOI: 10.1126/science.1151614
Google Scholar
[16]
N. A. Khan, B. K. Jung, Z. Hasan, and S. H. Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks,, Journal of Hazardous Materials, vol. 282, p.194–200, Jan. 2015,.
DOI: 10.1016/j.jhazmat.2014.03.047
Google Scholar
[17]
S. Liu, J. Cui, J. Huang, B. Tian, F. Jia, and Z. Wang, Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 206, p.65–71, Jan. 2019,.
DOI: 10.1016/j.saa.2018.07.082
Google Scholar
[18]
X. Ren et al., Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation,, Electrochimica Acta, vol. 296, p.418–426, Feb. 2019,.
DOI: 10.1016/j.electacta.2018.11.024
Google Scholar
[19]
Y. Arafat, M. R. Azhar, Y. Zhong, H. R. Abid, M. O. Tadé, and Z. Shao, Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc-Air Batteries,, Advanced Energy Materials, vol. 11, no. 26. John Wiley and Sons Inc, Jul. 01, 2021.
DOI: 10.1002/aenm.202100514
Google Scholar
[20]
S. N. Baker and G. A. Baker, Luminescent carbon nanodots: Emergent nanolights,, Angewandte Chemie - International Edition, vol. 49, no. 38. p.6726–6744, Sep. 10, 2010.
DOI: 10.1002/anie.200906623
Google Scholar
[21]
H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, and M. Hassanpour, Preparation of highly luminescent nitrogen-doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli,, Journal of Molecular Liquids, vol. 241, p.1114–1119, Sep. 2017,.
DOI: 10.1016/j.molliq.2017.06.106
Google Scholar
[22]
Y. Xiong, J. Schneider, C. J. Reckmeier, H. Huang, P. Kasák, and A. L. Rogach, Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen-doped carbon dots,, Nanoscale, vol. 9, no. 32, p.11730–11738, Aug. 2017,.
DOI: 10.1039/c7nr03648e
Google Scholar
[23]
X. M. Wei, Y. Xu, Y. H. Li, X. B. Yin, and X. W. He, Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications,, RSC Advances, vol. 4, no. 84, p.44504–44508, 2014,.
DOI: 10.1039/c4ra08523j
Google Scholar
[24]
Z. Wang, Y. Lu, H. Yuan, Z. Ren, C. Xu, and J. Chen, Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection,, Nanoscale, vol. 7, no. 48, p.20743–20748, Dec. 2015,.
DOI: 10.1039/c5nr05804j
Google Scholar
[25]
E. F. C. Simões, J. C. G. Esteves Da Silva, and J. M. M. Leitão, Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots,, Sensors and Actuators, B: Chemical, vol. 220, p.1043–1049, Jul. 2015,.
DOI: 10.1016/j.snb.2015.06.072
Google Scholar
[26]
V. Balakumar, M. Ramalingam, K. Sekar, C. Chuaicham, and K. Sasaki, Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis,, Chemical Engineering Journal, vol. 426, Dec. 2021,.
DOI: 10.1016/j.cej.2021.131739
Google Scholar