Nitrogen-Doped Carbon Dots in Zeolitic Imidazolate Framework Core-Shell Nanocrystals: Synthesis and Characterization

Article Preview

Abstract:

Metal-organic frameworks (MOFs) have exciting properties and promising applications in different fields. In this work, novel zeolitic imidazolate frameworks (ZIFs) have been synthesized by encapsulating N-doped carbon quantum dots (N-CDs) with a blue FL into the zeolitic imidazolate framework materials core-shell structure (ZIF-8@ZIF-67). The functionalized core-shell MOFs maintained their crystal structure, morphology, and enhanced UV-vis absorbance. The properties of these new composites exhibit excellent potential for different applications including sensing, photo-catalysis, and selective adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 336)

Pages:

81-87

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Giliopoulos, A. Zamboulis, D. Giannakoudakis, D. Bikiaris, and K. Triantafyllidis, Polymer/metal-organic framework (MOF) nanocomposites for biomedical applications,, Molecules, vol. 25, no. 1. MDPI AG, Jan. 01, 2020.

DOI: 10.3390/molecules25010185

Google Scholar

[2] W. A. Amer et al., Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications,, ChemSusChem, vol. 13, no. 6, p.1629–1636, Mar. 2020,.

DOI: 10.1002/cssc.201901436

Google Scholar

[3] G. A. Haghighat et al., Zeolitic imidazolate frameworks (ZIFs) of various morphologies against monochrome black-T (EBT): Optimizing the key physicochemical features by process modeling,, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 606, Dec. 2020,.

DOI: 10.1016/j.colsurfa.2020.125391

Google Scholar

[4] Y. Liu et al., The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment,, Chemical Engineering Journal, vol. 417. Elsevier B.V., Aug. 01, 2021.

DOI: 10.1016/j.cej.2020.127914

Google Scholar

[5] S. M. Flihh and S. H. Ammar, Fabrication and photocatalytic degradation activity of core/shell ZIF-67@CoWO4@CoS heterostructure photocatalysts under visible light,, Environmental Nanotechnology, Monitoring, and Management, vol. 16, Dec. 2021,.

DOI: 10.1016/j.enmm.2021.100595

Google Scholar

[6] Z. Huang et al., Stable core-shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution,, Journal of Materials Research, vol. 36, no. 3, p.602–614, Feb. 2021,.

DOI: 10.1557/s43578-021-00117-5

Google Scholar

[7] B. P. Biswal, D. B. Shinde, V. K. Pillai, and R. Banerjee, Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning,, Nanoscale, vol. 5, no. 21, p.10556–10561, Nov. 2013,.

DOI: 10.1039/c3nr03511e

Google Scholar

[8] S. S. Sankar, K. Karthick, K. Sangeetha, A. Karmakar, and S. Kundu, Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review,, ACS Omega, vol. 5, no. 1. American Chemical Society, p.57–67, Jan. 14, 2020.

DOI: 10.1021/acsomega.9b03615

Google Scholar

[9] K. S. Park et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,, Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, p.10186–10191, Jul. 2006,.

DOI: 10.1073/pnas.0602439103

Google Scholar

[10] B. Wang, A. P. Côté, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs,, Nature, vol. 453, no. 7192, p.207–211, May 2008,.

DOI: 10.1038/nature06900

Google Scholar

[11] A. Zanon and F. Verpoort, Metals@ZIFs: Catalytic applications and size-selective catalysis,, Coordination Chemistry Reviews, vol. 353. Elsevier B.V., p.201–222, Dec. 15, 2017.

DOI: 10.1016/j.ccr.2017.09.030

Google Scholar

[12] K. Zhang, H. Shang, B. Li, Z. Wang, Y. Lu, and X. Wang, Structural design of metal catalysts based on ZIFs: From nanoscale to the atomic level,, Nano Select, vol. 2, no. 10, p.1902–1925, Oct. 2021,.

DOI: 10.1002/nano.202100009

Google Scholar

[13] S. Ahmed, J. Shim, H. J. Sun, and G. Park, Transition Metals (Co or Ni) Encapsulated in Carbon Nanotubes Derived from Zeolite Imidazolate Frameworks (ZIFs) as Bifunctional Catalysts for the Oxygen Reduction and Evolution Reactions,, Physica Status Solidi (A) Applications and Materials Science, vol. 217, no. 12, Jun. 2020,.

DOI: 10.1002/pssa.201900969

Google Scholar

[14] Y. Liu, E. Hu, E. A. Khan, and Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture,, Journal of Membrane Science, vol. 353, no. 1–2, p.36–40, 2010,.

DOI: 10.1016/j.memsci.2010.02.023

Google Scholar

[15] S. N. Eustis et al., Electron-driven acid-base chemistry: Proton transfer from hydrogen chloride to ammonia,, Science, vol. 319, no. 5865, p.936–939, Feb. 2008,.

DOI: 10.1126/science.1151614

Google Scholar

[16] N. A. Khan, B. K. Jung, Z. Hasan, and S. H. Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks,, Journal of Hazardous Materials, vol. 282, p.194–200, Jan. 2015,.

DOI: 10.1016/j.jhazmat.2014.03.047

Google Scholar

[17] S. Liu, J. Cui, J. Huang, B. Tian, F. Jia, and Z. Wang, Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions,, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 206, p.65–71, Jan. 2019,.

DOI: 10.1016/j.saa.2018.07.082

Google Scholar

[18] X. Ren et al., Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation,, Electrochimica Acta, vol. 296, p.418–426, Feb. 2019,.

DOI: 10.1016/j.electacta.2018.11.024

Google Scholar

[19] Y. Arafat, M. R. Azhar, Y. Zhong, H. R. Abid, M. O. Tadé, and Z. Shao, Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc-Air Batteries,, Advanced Energy Materials, vol. 11, no. 26. John Wiley and Sons Inc, Jul. 01, 2021.

DOI: 10.1002/aenm.202100514

Google Scholar

[20] S. N. Baker and G. A. Baker, Luminescent carbon nanodots: Emergent nanolights,, Angewandte Chemie - International Edition, vol. 49, no. 38. p.6726–6744, Sep. 10, 2010.

DOI: 10.1002/anie.200906623

Google Scholar

[21] H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, and M. Hassanpour, Preparation of highly luminescent nitrogen-doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli,, Journal of Molecular Liquids, vol. 241, p.1114–1119, Sep. 2017,.

DOI: 10.1016/j.molliq.2017.06.106

Google Scholar

[22] Y. Xiong, J. Schneider, C. J. Reckmeier, H. Huang, P. Kasák, and A. L. Rogach, Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen-doped carbon dots,, Nanoscale, vol. 9, no. 32, p.11730–11738, Aug. 2017,.

DOI: 10.1039/c7nr03648e

Google Scholar

[23] X. M. Wei, Y. Xu, Y. H. Li, X. B. Yin, and X. W. He, Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications,, RSC Advances, vol. 4, no. 84, p.44504–44508, 2014,.

DOI: 10.1039/c4ra08523j

Google Scholar

[24] Z. Wang, Y. Lu, H. Yuan, Z. Ren, C. Xu, and J. Chen, Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection,, Nanoscale, vol. 7, no. 48, p.20743–20748, Dec. 2015,.

DOI: 10.1039/c5nr05804j

Google Scholar

[25] E. F. C. Simões, J. C. G. Esteves Da Silva, and J. M. M. Leitão, Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots,, Sensors and Actuators, B: Chemical, vol. 220, p.1043–1049, Jul. 2015,.

DOI: 10.1016/j.snb.2015.06.072

Google Scholar

[26] V. Balakumar, M. Ramalingam, K. Sekar, C. Chuaicham, and K. Sasaki, Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis,, Chemical Engineering Journal, vol. 426, Dec. 2021,.

DOI: 10.1016/j.cej.2021.131739

Google Scholar