[1]
T. Van Steenkiste, and J. Smith, Evaluation of Coating Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), pp.274-82.
DOI: 10.1361/10599630419427
Google Scholar
[2]
T. Stoltenhoff, H. Kreye, and H. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), pp.542-50.
DOI: 10.1361/105996302770348682
Google Scholar
[3]
M. Grujicic, C. Zhao, W. DeRosset, and D. Helfritch, Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater. Des., 2004, 25(8), pp.681-88.
DOI: 10.1016/j.matdes.2004.03.008
Google Scholar
[4]
M. Grujicic, C. Zhao, C. Tong, W. DeRosset, and D. Helfritch, 2004 Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process, Mater. Sci. and Eng., A, 2004, 368(1-2), pp.222-30.
DOI: 10.1016/j.msea.2003.10.312
Google Scholar
[5]
S. Zahiri, D. Fraser, S. Gulizia, M. Jahedi, Effect of Processing Conditions on Porosity Formation in Cold Gas Dynamic Spraying of Copper, J. Therm. Spray Technol., 2006, 15(3), pp.422-30.
DOI: 10.1361/105996306x124437
Google Scholar
[6]
Eason PD, Eden TJ, Kennett SC, Kaufman MJ (2012) A Structure Property Processing Comparison of Cold rolled PM Copper and Cold Gas Dynamically Sprayed Copper. J Powder Metall Min 1:101.
DOI: 10.4172/2168-9806.1000101
Google Scholar
[7]
V. Champagne, D. Helfritch, and M. Trexler, Some Material Characteristics of Cold-Sprayed Structures Research, Letters in Materials Science, (2007).
DOI: 10.1155/2007/27347
Google Scholar
[8]
J. Hollomon, Tensile deformation, Trans. AIME, 1945, 162, pp.268-72.
Google Scholar
[9]
N. Ogasawara, N. Chiba, and X. Chen, Measuring the plastic properties of bulk materials by single indentation test, Scr. Mater., 2006, 54(1), pp.65-70.
DOI: 10.1016/j.scriptamat.2005.09.009
Google Scholar
[10]
G. Johnson, W. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proc. Int. Symp. Ballist., 7th, 1983,(The Hague, The Netherlands) pp.541-47.
Google Scholar
[11]
V. Champagne, D. Helfritch, M. Trexler, and B. Gabriel, The effect of cold spray impact velocity on deposit hardness, Modell. Simul. Mater. Sci. Eng., 2010, 18.
DOI: 10.1088/0965-0393/18/6/065011
Google Scholar
[12]
Alloy Digest, Filing code Cu-144, ASM International, (2002).
Google Scholar
[13]
Alloy Digest, Filing code Ni-75, ASM International, (2002).
Google Scholar
[14]
D. Tabor, The physical meaning of indentation and scratch hardness, Br. J. Appl. Phys., 1956, 7(5), pp.159-66.
DOI: 10.1088/0508-3443/7/5/301
Google Scholar
[15]
V. Champagne, D. Helfritch, P. Leyman, P. Lempicki, and S. Grendahl, The effects of gas and metal characteristics on sprayed metal coatings, Modell. Simul. Mater. Sci. Eng., 2005, 13, pp.1-10.
DOI: 10.1088/0965-0393/13/7/008
Google Scholar
[16]
R. Dykhuizen, M. Smith, D. Gilmore, R. Neiser, X. Jiang, and E. Sampath, 1999 Impact of high velocity cold spray particles, J. Therm. Spray Technol., 8(4), pp.559-64.
DOI: 10.1361/105996399770350250
Google Scholar
[17]
S. Yin, X. Wanga, W. Y. Li, and H. Jie, Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying,, Appl. Surf. Sci., vol. 257, pp.7560-7565, (2011).
DOI: 10.1016/j.apsusc.2011.03.126
Google Scholar
[18]
Ozlem Cetin, Onur Tazegul, E. Sabri Kayali, Effect of Parameters to the Coating Formation during Cold Spray Process", Proceedings of the 2nd World Congress on Mechanical, Chemical, and Material Engineering (MCM,16) Budapest, Hungary – August 22 – 23, (2016).
DOI: 10.11159/mmme16.140
Google Scholar