Inhibition Reaction Behaviour of Combined Grapefruit and Lemongrass Plant Distillates on Plain Carbon Steel Degradation

Article Preview

Abstract:

Applications of harmless fluid derivative for the sustenance of carbon steel in corrosive environments are more appropriate for environmental sustainability and safety of personnel. Admixture of grapefruit and lemongrass distillates was assessed for their protective performance on plain carbon steel within 0.5 M of H2SO4 and HCl solution through weight loss analysis and optical macroscopy studies. Results shows the plant extracts effectively stifled corrosion in both acids with inhibition value range (lowest to highest) of 98.65%-99.5% in H2SO4 solution and 96.31%- 98.39% in HCl. PCS in H2SO4 and HCl electrolyte at 0% extract concentrate were 5.330 mm/y and 2.701 mm/y. Inclusion of the distillate to the electrolyte significantly reduced the corrosion rates in both acids to midpoint values of 0.0448 mm/y and 0.072 mm/y at 240 h of test. The oil extract strongly adsorbed unto the steel surface by means of chemisorption with midpoint Gibbs free energy value above -44 Kjmol-1 signifying strong covalent bonding. The extract adsorption aligned with Langmuir and Frumkin adsorption isotherms with interaction coefficient above 0.9. Optical images of steel surface without inhibitor showed a severely corroded morphology and significant reduction in thickness. The protected steel substantially differs the earlier observation due to the presence of the oil extract which passivated the steel exterior.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 338)

Pages:

41-48

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.T. Loto and P. Babalola: Corrosion polarization behavior and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations Cogent Eng. Vol. 4(1) (2017), p.1422229. http://doi.org/10.1080/23311916.2017.1422229.

DOI: 10.1080/23311916.2017.1422229

Google Scholar

[2] J. Kruger and S. Begum: Corrosion of Metals: Overview, Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam 2016).

DOI: 10.1016/b978-0-12-803581-8.02708-9

Google Scholar

[3] B.S. Syrett: Cost of Corrosion in the Electric Power Industry EPRI Report 1004662 (2002).

Google Scholar

[4] G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y. Paul Virmani and J.H. Payer: Corrosion Costs and Preventive Strategies in the United States Mats. Perform. (2002), pp.4-9.

Google Scholar

[5] G.H. Koch: Cost of corrosion, Trends in Oil and Gas Corrosion Research and Technologies, Production and Transmission (Elsevier, Amsterdam 2017) Chapter 1, pp.3-30.

Google Scholar

[6] Z. Ahmad: Selection of materials for corrosive environment, Principles of Corrosion Engineering and Corrosion Control (Elsevier, Amsterdam 2006) Chapter 9, pp.479-549.

DOI: 10.1016/b978-075065924-6/50010-6

Google Scholar

[7] W. Renpu: Oil and Gas Well Corrosion and Corrosion Prevention, Advanced Well Completion Engineering (Elsevier, Amsterdam, 2011) Chapter 1, pp.617-700.

DOI: 10.1016/b978-0-12-385868-9.00018-x

Google Scholar

[8] B.N. Popov: Corrosion Inhibitors, Corrosion Engineering Principles and Solved Problems, (Elsevier, Amsterdam 2015) Chapter 14, pp.581-597.

Google Scholar

[9] W.P. Singh and J.O. Bockris: Toxicity Issues of Organic Corrosion Inhibitors: Applications of QSAR Model (NACE International, Texas 1996).

Google Scholar

[10] B.E. Brycki, I.H. Kowalczyk, A. Szulc, O. Kaczerewska and M. Pakiet, Organic Corrosion Inhibitors IntechOpen (2017).

DOI: 10.5772/intechopen.72943

Google Scholar

[11] Y. Li, P. Zhao, Q. Liang and B. Hou: Berberine as a natural source inhibitor for mild steel in 1 M H2SO4 Appl. Surf. Sci. Vol. 252 (2005), pp.1245-1253.

DOI: 10.1016/j.apsusc.2005.02.094

Google Scholar

[12] G. Quartarone, L. Ronchin, A. Vavasori, C. Tortato and L. Bonaldo: Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions Corros. Sci. Vol. 64 (2012), pp.82-89.

DOI: 10.1016/j.corsci.2012.07.008

Google Scholar

[13] H. Ashassi-Sorkhabi, M.R. Majidi and K. Seyyedi, Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution Appl. Surf. Sci. Vol. 225 (2004), pp.176-185.

DOI: 10.1016/j.apsusc.2003.10.007

Google Scholar

[14] M. ÖZcan: AC impedance measurements of cysteine adsorption at mild steel/sulphuric acid interface as corrosion inhibitor J. Solid State Electrochem. Vol. 12 (2008), pp.1653-1661.

DOI: 10.1007/s10008-008-0551-1

Google Scholar

[15] R.T. Loto and E. Oghenerukewe: Inhibition studies of rosmarinus officinalis on the pitting corrosion resistance 439LL ferritic stainless steel in dilute sulphuric acid Orient. J. Chem. Vol. 32(5) (2016), pp.2813-2832.

DOI: 10.13005/ojc/320557

Google Scholar

[16] J. Fu, S. Li, L. Cao, Y. Wang, L. Yan and L. Lu: L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution J. Mater. Sci. Vol. 45 (2010), pp.979-986.

DOI: 10.1007/s10853-009-4028-0

Google Scholar

[17] A. Bouoidina, M. Chaouch, A. Abdellaoui, A. Lahkimi, B. Hammouti, F. El-Hajjaji, M. Taleb, and A. Nahle: Essential oil of Foeniculum vulgare,: Antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium Anti-Corros. Method M. Vol. 64(5) (2017), pp.563-572.

DOI: 10.1108/acmm-10-2016-1716

Google Scholar

[18] I. Hamdani, E. El Ouariachi, O. Mokhtari, A. Salhi, N. Chahboun, B. ElMahi, A. Bouyanzer, A Zarrouk, B. Hammouti and J. Costa: Chemical constituents and corrosion inhibition of mild steel by the essential oil of Thymus algeriensis in 1.0 M hydrochloric acid solution Der Pharm. Chem. Vol. 7(8) (2015), pp.252-264.

DOI: 10.1007/s11164-013-1246-5

Google Scholar

[19] Y. El Ouadi, A. Bouyanzer, L. Majidi, J. Paolini, J.M. Desjobert, J. Costa, A. Chetouani and B. Hammouti: Salvia officinalis essential oil and the extract as green corrosion inhibitor of mild steel in hydrochloric acid J. Chem. Pharm. Res. Vol. 6(7) (2014), pp.1401-1416.

DOI: 10.1007/s11164-014-1802-7

Google Scholar

[20] E. El Ouariachi, A. Bouyanzer, R. Salghi, B. Hammouti, J.M. Desjobert, J. Costa, J Paolini and L. Majidi: Inhibition of corrosion of mild steel in 1 M HCl by the essential oil or solvent extracts of Ptychotis verticillata Res. Chem. Intermed. Vol. 41 (2015), pp.935-946.

DOI: 10.1007/s11164-013-1246-5

Google Scholar

[21] K. Boumhara, M. Tabyaoui, C. Jama and F. Bentiss, Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations J. Ind. Eng. Chem. Vol. 29 (2015), pp.146-155.

DOI: 10.1016/j.jiec.2015.03.028

Google Scholar

[22] N. Lahhit, A. Bouyanzer, J.M. Desjobert, B. Hammouti, R. Salghi, J. Costa, C. Jama, F. Bentiss, L Majidi, Fennel (Foeniculum Vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution, Port. Electrochim. Acta. Vol. 29(2) (2011), pp.127-138.

DOI: 10.4152/pea.201102127

Google Scholar

[23] J.O. Bockris and D.A.J. Swinkels: Adsorption of n-decylamine on solid metal electrodes J. of Elect. Soc. Vol. 111(6) (1964), p.736.

DOI: 10.1149/1.2426222

Google Scholar

[24] K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu and M. Velan: Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three parameter isotherm models J. Hazard. Mater. Vol. B133 (2006), p.304–308.

DOI: 10.1016/j.jhazmat.2005.10.016

Google Scholar

[25] R.T. Loto, C.A. Loto, O. Joseph and G. Olanrewaju: Adsorption and corrosion inhibition properties of thiocarbanilide on the electrochemical behaviour of high carbon steel in dilute acid solutions Results in Phys. Vol. 6 (2016), pp.305-314. https://doi.org/10.1016/j.rinp. 2016.05.013 (2016).

DOI: 10.1016/j.rinp.2016.05.013

Google Scholar