[1]
O. Union, Health at a Glance: Europe 2020,, OECD, Nov. 2020.
Google Scholar
[2]
A. S. Mao and D. J. Mooney, Regenerative medicine: Current therapies and future directions,, Proceedings of the National Academy of Sciences, vol. 112, no. 47, p.14452–14459, Nov. 2015,.
DOI: 10.1073/pnas.1508520112
Google Scholar
[3]
K. Kawai et al., Calcium-Based Nanoparticles Accelerate Skin Wound Healing,, PLoS ONE, vol. 6, no. 11, p. e27106, Nov. 2011,.
DOI: 10.1371/journal.pone.0027106
Google Scholar
[4]
N. Ribeiro et al., New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers,, Nanomedicine: Nanotechnology, Biology and Medicine, vol. 33, p.102353, Apr. 2021,.
DOI: 10.1016/j.nano.2020.102353
Google Scholar
[5]
A. Veiga, F. Castro, C. C. Reis, A. Sousa, A. L. Oliveira, and F. Rocha, Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process,, Materials Science and Engineering: C, vol. 108, p.110400, Mar. 2020,.
DOI: 10.1016/j.msec.2019.110400
Google Scholar
[6]
A. Veiga, F. Castro, A. Oliveira, and F. Rocha, High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites,, Journal of Chemical Technology & Biotechnology, vol. 96, no. 1, p.241–248, Jan. 2021,.
DOI: 10.1002/jctb.6532
Google Scholar
[7]
C. Holland, K. Numata, J. Rnjak-Kovacina, and F. P. Seib, The Biomedical Use of Silk: Past, Present, Future,, Advanced Healthcare Materials, vol. 8, no. 1, p.1800465, Jan. 2019,.
DOI: 10.1002/adhm.201800465
Google Scholar
[8]
A. Veiga, F. Castro, F. Rocha, and A. L. Oliveira, Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials,, Frontiers in Materials, vol. 7, no. February, p.1–14, Feb. 2020,.
DOI: 10.3389/fmats.2020.00024
Google Scholar
[9]
A. Veiga, F. Castro, C. C. Reis, A. Sousa, A. L. Oliveira, and F. Rocha, Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process,, Materials Science and Engineering: C, vol. 108, p.110400, Mar. 2020,.
DOI: 10.1016/j.msec.2019.110400
Google Scholar
[10]
F. Castro, A. Ferreira, F. Rocha, A. Vicente, and J. Teixeira, Precipitation of Hydroxyapatite at 37o C in a Meso Oscillatory Flow Reactor Operated in Batch at Constant Power Density,, AIChE Journal, vol. 7, no. Part 1, p.405–410, 2014,.
DOI: 10.1002/aic.14193
Google Scholar
[11]
P. Cruz, C. Silva, F. Rocha, and A. Ferreira, The axial dispersion of liquid solutions and solid suspensions in planar oscillatory flow crystallizers,, AIChE Journal, vol. 65, no. 9, 2019,.
DOI: 10.1002/aic.16683
Google Scholar
[12]
F. Castro, A. Ferreira, F. Rocha, A. Vicente, and J. A. Teixeira, Precipitation of hydroxyapatite at 37 °C in a meso oscillatory flow reactor operated in batch at constant power density,, AIChE Journal, vol. 59, no. 12, p.4483–4493, Dec. 2013,.
DOI: 10.1002/aic.14193
Google Scholar
[13]
J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, 1st Editio., vol. 18. Amsterdam: Elsevier Science, (1994).
Google Scholar
[14]
S. Lawton, G. Steele, P. Shering, L. Zhao, I. Laird, and X.-W. Ni, Continuous Crystallization of Pharmaceuticals Using a Continuous Oscillatory Baffled Crystallizer,, Organic Process Research & Development, vol. 13, no. 6, p.1357–1363, Nov. 2009,.
DOI: 10.1021/op900237x
Google Scholar
[15]
J. H. Kim, S. H. Kim, H. K. Kim, T. Akaike, and S. C. Kim, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods,, Journal of Biomedical Materials Research, vol. 62, no. 4, p.600–612, 2002,.
Google Scholar
[16]
J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, 1st Editio., vol. 18. Amsterdam: Elsevier Science, (1994).
Google Scholar
[17]
C. Oliveira, A. Ferreira, and F. Rocha, Dicalcium Phosphate Dihydrate Precipitation,, Chemical Engineering Research and Design, vol. 85, no. 12, p.1655–1661, Jan. 2007,.
DOI: 10.1016/s0263-8762(07)73209-4
Google Scholar
[18]
K. Issa, A. Alanazi, K. A. Aldhafeeri, O. Alamer, and M. Alshaaer, Brushite: Synthesis, Properties, and Biomedical Applications,, in Crystallization [Working Title], IntechOpen, 2022.
DOI: 10.5772/intechopen.102007
Google Scholar
[19]
T. Toshima et al., Morphology control of brushite prepared by aqueous solution synthesis,, Journal of Asian Ceramic Societies, vol. 2, no. 1, p.52–56, Mar. 2014,.
DOI: 10.1016/j.jascer.2014.01.004
Google Scholar
[20]
A. Veiga, F. Castro, F. Rocha, and A. Oliveira, Silk‐based microcarriers: current developments and future perspectives,, IET Nanobiotechnology, vol. 14, no. 8, p.645–653, Oct. 2020,.
DOI: 10.1049/iet-nbt.2020.0058
Google Scholar
[21]
A. Veiga, F. Castro, F. Rocha, and A. L. Oliveira, Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications,, ACS Appl Bio Mater, vol. 3, no. 6, p.3441–3455, Jun. 2020,.
DOI: 10.1021/acsabm.0c00140
Google Scholar
[22]
M. Yang et al., Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells,, Biomacromolecules, vol. 15, no. 4, p.1185–1193, Apr. 2014,.
DOI: 10.1021/bm401740x
Google Scholar
[23]
C. Keil et al., Ca-Zn-Ag Alginate Aerogels for Wound Healing Applications: Swelling Behavior in Simulated Human Body Fluids and Effect on Macrophages,, Polymers, vol. 12, no. 11, p.2741, Nov. 2020,.
DOI: 10.3390/polym12112741
Google Scholar
[24]
G. Dharunya, N. Duraipandy, R. Lakra, P. S. Korapatti, R. Jayavel, and M. S. Kiran, Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy,, Biomedical Materials, vol. 11, no. 4, p.045011, Aug. 2016,.
DOI: 10.1088/1748-6041/11/4/045011
Google Scholar
[25]
A. A. Jack et al., Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development,, Biomacromolecules, vol. 20, no. 8, p.2953–2961, Aug. 2019,.
DOI: 10.1021/acs.biomac.9b00522.s001
Google Scholar