Opto-Electronic Characterisation of GaAsBi/GaAs Multiple Quantum Wells for Photovoltaic Applications

Article Preview

Abstract:

A series of GaAsBi/GaAs multiple quantum well p-i-n diodes was grown using molecular beam epitaxy and the opto-electrical characterisations are presented. The result shows that devices experience low carrier extractions when light is absorbed due to hole trapping in the valence band. Carrier enhancement can be achieved by applying slight reverse bias when the measurement was taken. The absorption coefficient of the devices is confirmed to be similar with other Bi-based work. GaAsBi/GaAs multiple quantum well do have a lot of room for improvement especially on growth, structure and strain level of the material. If these components can be catered, GaAsBi can be a competitive alternative for 1 eV junction in multiple junction solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 343)

Pages:

99-104

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. J. Sweeney and S. R. Jin, "Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared," Journal of Applied Physics, vol. 113, no. 4, Jan. 2013.

DOI: 10.1063/1.4789624

Google Scholar

[2] T. Thomas et al., "Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell," Semiconductor Science and Technology, vol. 30, no. 9, Sep. 2015.

DOI: 10.1088/0268-1242/30/9/094010

Google Scholar

[3] V. Bahrami-Yekta, T. Tiedje, and M. Masnadi-Shirazi, "MBE growth optimization for GaAs1-xBix and dependence of photoluminescence on growth temperature," Semiconductor Science and Technology, vol. 30, no. 9, Sep. 2015.

DOI: 10.1088/0268-1242/30/9/094007

Google Scholar

[4] T. B. O. Rockett et al., "Influence of growth conditions on the structural and opto-electronic quality of GaAsBi," Journal of Crystal Growth, vol. 477, p.139–143, Nov. 2017.

DOI: 10.1016/j.jcrysgro.2017.02.004

Google Scholar

[5] C. J. Hunter et al., "Absorption characteristics of GaAs1?xBix/GaAs diodes in the near-infrared," IEEE Photonics Technology Letters, vol. 24, no. 23, p.2191–2194, 2012.

DOI: 10.1109/LPT.2012.2225420

Google Scholar

[6] P. K. Patil et al., "GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique," Nanotechnology, vol. 28, no. 10, Feb. 2017.

DOI: 10.1088/1361-6528/aa596c

Google Scholar

[7] R. D. Richards, F. Bastiman, D. Walker, R. Beanland, and J. P. R. David, "Growth and structural characterization of GaAsBi/GaAs multiple quantum wells," Semiconductor Science and Technology, vol. 30, no. 9, Sep. 2015.

DOI: 10.1088/0268-1242/30/9/094013

Google Scholar

[8] T. B. O. Rockett, N. A. Adham, F. Harun, J. P. R. David, and R. D. Richards, "Growth of GaAsBi/GaAs multiple quantum wells with up to 120 periods," Journal of Crystal Growth, vol. 589, Jul. 2022.

DOI: 10.1016/j.jcrysgro.2022.126679

Google Scholar

[9] R. D. Richards et al., "Photovoltaic characterisation of GaAsBi/GaAs multiple quantum well devices," Solar Energy Materials and Solar Cells, vol. 172, p.238–243, Dec. 2017.

DOI: 10.1016/j.solmat.2017.07.029

Google Scholar

[10] R. D. Richards, F. Bastiman, J. S. Roberts, R. Beanland, D. Walker, and J. P. R. David, "MBE grown GaAsBi/GaAs multiple quantum well structures: Structural and optical characterization," Journal of Crystal Growth, vol. 425, p.237–240, Jul. 2015.

DOI: 10.1016/j.jcrysgro.2015.02.053

Google Scholar

[11] Y. I. Mazur et al., "Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs 1− x Bi x /GaAs heterostructures," Nanotechnology, vol. 25, no. 3, p.035702, Jan. 2014.

DOI: 10.1088/0957-4484/25/3/035702

Google Scholar

[12] R. D. Richards et al., "Molecular beam epitaxy growth of GaAsBi using As2 and As 4," Journal of Crystal Growth, vol. 390, p.120–124, Mar. 2014.

DOI: 10.1016/j.jcrysgro.2013.12.008

Google Scholar

[13] Z. Zhou, D. F. Mendes, R. D. Richards, F. Bastiman, and J. P. David, "Absorption properties of GaAsBi based p-i-n heterojunction diodes," Semiconductor Science and Technology, vol. 30, no. 9, Sep. 2015.

DOI: 10.1088/0268-1242/30/9/094004

Google Scholar

[14] H. M. Khalil, B. Royall, S. Mazzucato, and N. Balkan, "Photoconductivity and photoluminescence under bias in GaInNAs/GaAs MQW p-i-n structures," Nanoscale Research Letters, vol. 7, no. 1, p.539, Dec. 2012.

DOI: 10.1186/1556-276X-7-539

Google Scholar

[15] A. R. Mohmad et al., "Localization effects and band gap of GaAsBi alloys," Physica Status Solidi (B) Basic Research, vol. 251, no. 6, p.1276–1281, 2014.

DOI: 10.1002/pssb.201350311

Google Scholar

[16] R. Kudrawiec et al., "Experimental and theoretical studies of band gap alignment in GaAs 1−x Bi x /GaAs quantum wells," Journal of Applied Physics, vol. 116, no. 23, p.233508, Dec. 2014.

DOI: 10.1063/1.4904740

Google Scholar

[17] K. Kakuyama, S. Hasegawa, H. Nishinaka, and M. Yoshimoto, "Impact of a small change in growth temperature on the tail states of GaAsBi," Journal of Applied Physics, vol. 126, no. 4, p.045702, Jul. 2019.

DOI: 10.1063/1.5109362

Google Scholar

[18] L V Keldysh, "Behavior of Non-Metallic Crystals in Strong Electric Fields," Soviet Physics Jetp, vol. 6, no. 4, p.763–770, 1958.

Google Scholar

[19] S M Sze and K K Ng, Physics of Semiconductor Devices, Third Edition. New Jersey, 2007.

Google Scholar

[20] S. Adachi, "Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga 1− x As, and In 1− x Ga x As y P 1− y ," Journal of Applied Physics, vol. 66, no. 12, p.6030–6040, Dec. 1989.

DOI: 10.1063/1.343580

Google Scholar

[21] F. Urbach, "The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids," Physical Review, vol. 92, no. 5, p.1324–1324, Dec. 1953.

DOI: 10.1103/PhysRev.92.1324

Google Scholar

[22] C. Gogineni, N. A. Riordan, S. R. Johnson, X. Lu, and T. Tiedje, "Disorder and the Urbach edge in dilute bismide GaAsBi," Applied Physics Letters, vol. 103, no. 4, Jul. 2013.

DOI: 10.1063/1.4816435

Google Scholar

[23] M. Masnadi-Shirazi, R. B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, and P. Servati, "Bandgap and optical absorption edge of GaAs 1−x Bi x alloys with 0 < x < 17.8%," Journal of Applied Physics, vol. 116, no. 22, p.223506, Dec. 2014.

DOI: 10.1063/1.4904081

Google Scholar

[24] R. D. Richards, C. J. Hunter, F. Bastiman, A. R. Mohmad, and J. P. R. David, "Telecommunication wavelength GaAsBi light emitting diodes," IET Optoelectronics, vol. 10, no. 2, p.34–38, Apr. 2016.

DOI: 10.1049/iet-opt.2015.0051

Google Scholar

[25] S. R. Johnson and T. Tiedje, "Temperature dependence of the Urbach edge in GaAs," Journal of Applied Physics, vol. 78, no. 9, p.5609–5613, 1995.

DOI: 10.1063/1.359683

Google Scholar

[26] S. Imhof et al., "Clustering effects in Ga(AsBi)," Applied Physics Letters, vol. 96, no. 13, 2010.

DOI: 10.1063/1.3374884

Google Scholar

[27] R. B. Lewis, D. A. Beaton, X. Lu, and T. Tiedje, "GaAs1 - x Bix light emitting diodes," Journal of Crystal Growth, vol. 311, no. 7, p.1872–1875, Mar. 2009.

DOI: 10.1016/j.jcrysgro.2008.11.093

Google Scholar

[28] S. Francoeur, S. Tixier, E. Young, T. Tiedje, and A. Mascarenhas, "Bi isoelectronic impurities in GaAs," Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 8, Feb. 2008.

DOI: 10.1103/PhysRevB.77.085209

Google Scholar