Magnetic Susceptibility Study of Hole-Doped Organic Metal κ-(ET)4Hg3-δCl8, δ=22% and κ-(ET)4Hg3-δBr8, δ=11%

Article Preview

Abstract:

The Non-Fermi-Liquid (NFL) state has been one of central issues in the strongly correlated electrons systems. This deviates from conventional Fermi Liquid (FL) behavior. In the hole-doped triangular lattice organic metal κ-(ET)4Hg3-δBr8, δ = 11% (κ-HgBr), the NFL state is observed as a linear temperature dependence of the resistivity which changed to the temperature square dependence behavior by pressure. The spin susceptibility dependence of the muon Knight shift, K(c), is not linear in the region below 50 K, unlike in other k-type organic superconductors. Furthermore, 13C-NMR study under pressure concluded that strong antiferromagnetic spin fluctuations (AFSF) contribute to the origin of NFL. To understand the underlying correlation of the enhanced AFSF and NFL state in k-HgBr, the K(c) plot study in the sister compound κ-(ET)4Hg3-δCl8, δ=22% (κ-HgCl) which shows metal to insulator transition at TMI ~ 20 K is desirable. In this study, we report a precise susceptibility measurement in both k-HgBr and k-HgCl. Furthermore, we summarize the c(T) data of k-HgBr and k-HgCl and discuss them from the viewpoint of the triangular and square lattice models.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 345)

Pages:

47-52

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Keimer et al. From Quantum Matter to High-temperature Superconductivity in Copper Oxides, Nature 518, (2015) 179–186.

DOI: 10.1038/nature14165

Google Scholar

[2] W. D. Knight, Nuclear Magnetic Resonance shift in metals, Phys. Rev. 76 (1949) 1259.

Google Scholar

[3] A. Yaoanc and P. Dalmas de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications, International Series of Monographs on Physics, Oxford University Press, New York, 2011.

Google Scholar

[4] A. M. Clogston and V. Jaccarino, Susceptibilities and negative Knight Shifts of Intermetallic Compounds, Phys. Rev. 121 (1960) 121.

DOI: 10.1103/physrev.121.1357

Google Scholar

[5] H. Taniguchi, T. Okuhata, T. Nagai, T. Nagai, K. Satoh, N. Mori, Y. Shimizu, M. Hedo, and Y. Uwatoko, Anomalous pressure dependence of superconductivity in layered organic conductor, κ-(ET)4Hg2.89Br8, J. Phys. Soc. Jpn. 76 (2007) 113709.

DOI: 10.1143/jpsj.76.113709

Google Scholar

[6] H. Oike, Y. Suzuki, H. Taniguchi, Y. Seki, K. Miyagawa, and K. Kanoda, Anomalous Metallic Behaviour in the Doped Spin Liquid Candidate κ-(ET)4Hg2.89Br8, Nat Commun 8 (2017) 756.

DOI: 10.1038/s41467-017-00941-6

Google Scholar

[7] K. Satoh, H. Fujita, K. Katayama, H. Taniguchi, T. U. Ito, K. Ohishi, and W. Higemoto, μSR Study of a Layered Organic Superconductor κ-(ET)4Hg2.89Br8. Physica B 404 (2009) 597-599.

Google Scholar

[8] Y. Eto, M. Itaya, and A. Kawamoto, Non-Fermi-Liquid Behavior of the Organic Superconductor κ-(ET)4Hg2.89Br8 Probed by 13C NMR. Phys. Rev. B 81 (2010) 212503.

DOI: 10.1016/j.physb.2009.12.068

Google Scholar

[9] H. Taniguchi, T. Okuhata, T. Nagai, T. Nagai, M. Miyashita, K. Uchiyama, K. Satoh, N. Mori, M. Hedo, and Y. Uwatoko, High-pressure studies of layered organic superconductors up to 9 GPa: Research of pressure effect on exactly and nearly half-filled systems in organics, J. Phys. Soc. Jpn. 76 (2007) Suppl. A, 168–171.

DOI: 10.1143/jpsjs.76sa.168

Google Scholar

[10] R. N. Lyuboskaya, M. Z. Aldoshina, L. M. Goldenberg, E. I. Zhilyaeva, Controlled synthesis of organic superconductors and conductors of the (BEDT-TTF)4Hg3-dX8 composition (X = Cl, Br, I), Syn. Met. 41–43 (1991) 2143–2146.

DOI: 10.1016/0379-6779(91)92037-i

Google Scholar

[11] R. N. Lyubovskaya, R. B. Lyubovskii, R. P. Shibaeva, M. Z. Aldoshina, L. M. Gol'denberg, L. P. Rozenberg, M. L. Khidekel, Y. F. Shul'pyakov, Superconductivity in a BEDT-TTF organic conductor with a chloromercurate anion, JETP Lett. (Engl. Transl.), Pis'ma Zh. Eksp. Teor. Fiz. 42 (1985) 380–383.

Google Scholar

[12] R. Li, V. Petricek, G. Yang, P. Coppens, Room- and low-temperature crystallographic study of the ambient pressure organic superconductor (Bisethylene dithiotetrathiofulvalene)4Hg2.89Br8, Chem. Mater. 10 (1998) 1521–1529.

DOI: 10.1021/cm9706457

Google Scholar

[13] G. A. Bain and J. F. Berry, Diamagnetic corrections and Pascal's constants, J. Chem. Educ. 85 (2008) 532.

Google Scholar

[14] S. Imajo, S. Sugiura, H. Akutsu, Y. Kohama, T. Isono, T.Terashima, K. Kindo, S. Uji, and Y. Nakazawa, Extraordinary p-electron superconductivity emerging from a quantum spin liquid, Phys. Rev. Res. 3 (2021) 033026.

DOI: 10.1103/physrevresearch.3.033026

Google Scholar

[15] K. Wakamatsu, Y. Ueno, K. Miyagawa, H. Taniguchi, and K. Kanoda, Reduced superfluid density in a doped spin liquid candidate, arXiv:2205.03682 (2022).

Google Scholar

[16] R. B. Lyubovskii, R. N. Lyubovskaya, and O. A. Dyachenko, Physical properties of some ET-based organic metals and superconductors with mercury containing anions, J. Phys. I France 6 (1996) 1609-1630.

DOI: 10.1051/jp1:1996178

Google Scholar

[17] G. Sekretarczyk, A. Graja, J. Pichet, R. N. Lyubovskaya, and R. B. Lyubovskii, On physical properties of the organic metal (BEDT-TTF)4Hg3-dCl8, J. Phys. France 49 (1988) 653-659.

DOI: 10.1051/jphys:01988004904065300

Google Scholar

[18] M. Tamura and R. Kato, Magnetic susceptibility of b'-[Pd(dmit)2] salts (dmit = 1, 3-dithiol-2-thione-4, 5-dithiolate, C3S5): evidence for frustration in spin-1/2 Heisenberg antiferomagnets on a triangular lattice, J. Phys.: Condens. Matter 14 (2002) L729-L734.

DOI: 10.1088/0953-8984/14/47/102

Google Scholar

[19] M. E. Lines, The quadratic-layer antiferromagnet, J. Phys. Chem. Solids, 31 (1970) 101–116.

Google Scholar