Microstructure Design of Semi-Solid Slurry for Metal Direct Writing

Article Preview

Abstract:

Metal direct writing in semi-solid slurry is an innovative technology to realize low-cost printing of load-bearing parts in contrast to laser-based additive manufacturing. However, it is challenging to achieve near net-forming of 3D parts in the current stage because of the out of controlled microstructure and hence the unstable macro extrusion of the used semi-solid slurry. Here, mixed powder remelting (MPR) is introduced to actively design the characteristics of solid phases, i.e., solid fraction, shape factor, and size distribution. Specifically, high-melting-point pure Al powder served as the dispersed solid phases in the liquid phase that transformed from Al-Si alloy powder after remelting, leading to hypoeutectic Al-Si semi-solid slurry. The effectiveness of this approach was experimentally examined and kinetically modelled, to prepare semi-solid slurry with pre-set microstructure. The improved extrusion stability of semi-solid slurry can be anticipated, and it is universal for manufacturing of metal matrix composites slurry.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 348)

Pages:

33-38

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[2] M. Vaezi, P. Drescher, H. Seitz, Beamless Metal Additive Manufacturing, Materials (Basel). 13 (2020).

DOI: 10.3390/ma13040922

Google Scholar

[3] C.S. Rice, P.F. Mendez, S.B. Brown, Metal Solid Freeform Fabrication Using Semi-Solid Slurries, JOM 52, 31–33 (2000).

DOI: 10.1007/s11837-000-0065-5

Google Scholar

[4] W. Chen, L. Thornley, H.G. Coe, S.J. Tonneslan, J.J. Vericella, C. Zhu, E.B. Duoss, R.M. Hunt, M.J. Wight, D. Apelian, A.J. Pascall, J.D. Kuntz, C.M. Spadaccini, Appl. Phys. Lett. 110 (2017).

DOI: 10.1063/1.4977555

Google Scholar

[5] A. Li, X. Liu, X. Wan, Y. Yang, Thermal behaviors and fluid flow controlling the geometry of 7075 aluminum alloy single tracks during liquid metal flow rapid cooling additive manufacturing. Int. Commun. Heat Mass Transf. 116, 104664 (2020).

DOI: 10.1016/j.icheatmasstransfer.2020.104664

Google Scholar

[6] X. Luo, Q. Yan, Z. Li, Effect of the pouring temperature by novel synchronous rolling-casting for metal on microstructure and properties of ZLl04 alloy, J. Mater. Res. 31 (2016) 2524–2530.

DOI: 10.1557/jmr.2016.233

Google Scholar

[7] Q. Zhang, H. Li, B. Han, K. Huang, X. Fang, Z. Chen, A distinctive Pb-Sn semi-solid additive manufacturing using wire feeding and extrusion, J. Manuf. Process. 80 (2022) 247–258.

DOI: 10.1016/j.jmapro.2022.06.006

Google Scholar

[8] D.D. Lima, K. N. Campo, S. T. Button, R. Caram, 3D thixo-printing: A novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Mater. Des. 196, 109161 (2020).

DOI: 10.1016/j.matdes.2020.109161

Google Scholar

[9] L. Englert, A. Klumpp, A. Ausländer, V. Schulze, S. Dietrich, Semi-solid wire-feed additive manufacturing of AlSi7Mg by direct induction heating. Addit. Manuf. Lett. 3, 100067 (2022).

DOI: 10.1016/j.addlet.2022.100067

Google Scholar

[10] J.Y. Hascoët, J. Parrot, P. Mognol, E. Willmann, Induction heating in a wire additive manufacturing approach. Weld. World 62, 249–257 (2018).

DOI: 10.1007/s40194-017-0533-y

Google Scholar

[11] S. Finke, F.K. Feenstra, Solid freeform fabrication by extrusion and deposition of semi-solid alloys. J. Mater. Sci. 37, 3101–3106 (2002).

Google Scholar

[12] D.B. Spencer, R. Mehrabian, M.C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans. 3, 1925–1932 (1972).

DOI: 10.1007/bf02642580

Google Scholar

[13] W. Qu, J. Chen, Z. Li, M. Luo, H. Lu, X. Hu, Q. Zhu, Rheological modeling and simulation of semi-solid slurry based on experimental study. Scr. Mater. 220 (2022) 114932.

DOI: 10.1016/j.scriptamat.2022.114932

Google Scholar

[14] X.G. Hu, Q. Zhu, H. V. Atkinson, H.X. Lu, F. Zhang, H.B. Dong, Y.L. Kang, A time-dependent power law viscosity model and its application in modelling semi-solid die casting of 319s alloy. Acta Mater. 124 (2017) 410–420.

DOI: 10.1016/j.actamat.2016.11.031

Google Scholar

[15] A.H. Ahmad, S. Naher, S.N. Aqida, D. Brabazon, Routes to Spheroidal Starting Material for Semisolid Metal Processing. Comprehensive Materials Processing 5, 135-148, (2014).

DOI: 10.1016/b978-0-08-096532-1.00515-x

Google Scholar

[16] S. Nafisi, R. Ghomashchi, The microstructural characterization of semi-solid slurries. JOM 58, 24–30 (2006).

DOI: 10.1007/s11837-006-0175-9

Google Scholar

[17] B. Niroumand, K. Xia, 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Mater. Sci. Eng. A 283, 70–75 (2000).

DOI: 10.1016/s0921-5093(00)00619-5

Google Scholar

[18] L. Gao, Y. Harada, S. Kumai, Analysis of microstructure evolution and precise solid fraction evaluation of A356 aluminum alloy during partial re-melting by a color etching method. J. Mater. Sci. 47, 6553–6564 (2012).

DOI: 10.1007/s10853-012-6585-x

Google Scholar

[19] X.G. Hu, Z.H. Hu, W.Y. Qu, X.W. Li, Z. Li, Y. Zhou, S.P. Midson, Q. Zhu, A novel criterion for assessing the processability of semi-solid alloys: The enthalpy sensitivity of liquid fraction. Materialia 8 (2019).

DOI: 10.1016/j.mtla.2019.100422

Google Scholar

[20] X.G. Hu, Q. Zhu, H.X. Lu, F. Zhang, D.Q. Li, S.P. Midson, Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting, J. Alloys Compd. 649 (2015) 204–210.

DOI: 10.1016/j.jallcom.2015.07.121

Google Scholar