Study on the Parameters of MAPLE and PLD Coating Technologies for Optimal Corrosion Resistance of MnTa2O6 Pseudo-Binary Oxide and 5,10-(4-Carboxy-Phenyl)-15,20-(4-Phenoxy-Phenyl)-Porphyrin Thin Film Coating System

Article Preview

Abstract:

This paper presents the results of factorial experiment applied to optimize Matrix‑Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition (PLD) coating technologies used to improve the corrosion resistance of steels. MnTa2O6 pseudo-binary oxides and 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin was used for these experiments to obtained thin film coating system of hybrid nanostructures. Based on factorial experiments, correlations between the main technological parameters of the coating process (MAPLE laser energy EMAPLE [mJ], PLD laser energy EPLD [mJ]) and porphyrin concentration and the main related property of the coating system (corrosion protection factor) were determined. The base material used as substrate in the experiments was S235JR+C. Electrochemical measurements showed that by applying the appropriate parameters of the coating technologies, homogeneous layered sandwich thin films were obtained and corrosion rate was reduced by more than 7 times.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 349)

Pages:

43-54

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Olorundaisi, T. Jamiru, A.T. Adegbola: Mitigating the effect of corrosion and wear in the application of high strength low alloy steels (HSLA) in the petrochemical transportation industry - a review Mater. Res. Express Vol. 6, 1265k9 (2020)

DOI: 10.1088/2053-1591/ab65e7

Google Scholar

[2] F. Farahbod: Investigations to find appropriate range of pH and a new replacement for hy-drazine to protect corrosion in steam-tanks of petrochemical industries Eng. Fail. Anal. Vol. 22 (2012) p.38–49

DOI: 10.1016/j.engfailanal.2012.01.003

Google Scholar

[3] T.K. Ross, G.C. Wood and I.J. Mahmud: The Anodic Behavior of Iron Carbon Alloys in Moving Acid Media J. Electrochem. Soc. Vol 113 (1966), p.334

DOI: 10.1149/1.2423957

Google Scholar

[4] J. Lyu, E.B. Kashkarov, N. Travitzky, M.S. Syrtanov, A.M. Lider: Sintering of MAX-phase materials by spark plasma and other methods J. Mater. Sci. Vol. 56 (2021), p.1980-(2015)

DOI: 10.1007/s10853-020-05359-y

Google Scholar

[5] J. Wu, P. Lu, L. Dong, M. Zhao, D. Li, W. Xue: Combination of plasma electrolytic oxidation and pulsed laser deposition for preparation of corrosion-resisting composite film on zirconium alloys Materials Letters Vol. 262 (2020): 127080

DOI: 10.1016/j.matlet.2019.127080

Google Scholar

[6] S. Amoruso: 6 - Plume characterization in pulsed laser deposition of metal oxide thin films, In: Metal Oxides, Metal Oxide-Based Thin Film Structures, edited by N. Pryds, V. Esposito, Elsevier, (2018), pp.133-160.

DOI: 10.1016/b978-0-12-811166-6.00006-6

Google Scholar

[7] D.A. Mohammed, A. Kadhim, and M.A. Fakhri : The enhancement of the corrosion protection of 304 stainless steel using Al2O3 films by PLD method, AIP Conference Proceedings 2045, (2018): 020014

DOI: 10.1063/1.5080827

Google Scholar

[8] A. Singh, Y. Lin, M.A. Quraishi, L.O. Olasunkanmi, O.E. Fayemi, Y. Sasikumar, B. Ramaganthan, I. Bahadur, I.B. Obot, A.S. Adekunle et al.: Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solu-tion: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies Molecules Vol. 20 (2015), pp.15122-15146

DOI: 10.3390/molecules200815122

Google Scholar

[9] Y. Feng, S. Chen, W. Guo, G. Liu, H. Ma, L. Wu: Electrochemical and molecular simulation studies on the corrosion inhibition of 5,10,15,20-tetraphenylporphyrin adlayers on iron surface Appl. Surf. Sci. Vol. 253 (2007), p.8734–8742

DOI: 10.1016/j.apsusc.2007.04.062

Google Scholar

[10] A. Singh, M. Talha, X. Xu, Z. Sun, Y. Lin: Heterocyclic Corrosion Inhibitors for J55 Steel in a Sweet Corrosive Medium ACS Omega Vol. 2 (2017) p.8177–8186

DOI: 10.1021/acsomega.7b01376

Google Scholar

[11] J. Wang, Y. Lin, A. Singh, W. Liu: Investigation of some Porphyrin Derivatives as Inhibitors for Corrosion of N80 Steel at High Temperature and High Pressure in 3.5% NaCl solution containing carbon dioxide Int. J. Electrochem. Sci. Vol. 23 (2018), p.11961–11973

DOI: 10.20964/2018.12.52

Google Scholar

[12] M.A. Deyab, G. Mele, A.M. Al-Sabagh, E. Bloise, D. Lomonaco, S.E. Mazzetto, C.D.S. Clemente: Synthesis and characteristics of alkyd resin/M-Porphyrins nanocomposite for corrosion protection application Prog. Org. Coat. Vol. 105 (2017), p.286–290

DOI: 10.1016/j.porgcoat.2017.01.008

Google Scholar

[13] I. Popa, E. Făgădar-Cosma, B.O. Ţăranu, M. Bîrdeanu, G. Făgădar-Cosma, I. Ţăranu: Corrosion Protection Efficiency of Bilayer Porphyrin-Polyaniline Film Deposited on Carbon Steel Macromol. Symp. Vol. 352 (2015), p.16–24

DOI: 10.1002/masy.201400137

Google Scholar

[14] A.V. Bîrdeanu, M. Birdeanu, E. Făgădar-Cosma: Corrosion protection characteristics of ceramics, porphyrins and hybrid / ceramics porphyrins, deposited as single and sandwich layers, by pulsed laser deposition (PLD) J. Alloys Compd. Vol. 706 (2017), p.220–226

DOI: 10.1016/j.jallcom.2017.02.221

Google Scholar

[15] M. Bîrdeanu, C. Epuran, I. Fratilescu, E. Făgădar-Cosma: Structured Thin Films Based on Synergistic Effects of MnTa2O6 Oxide and bis-Carboxy-phenyl-substituted Porphyrins, Capable to Inhibit Steel Corrosion Processes Vol. 9 (2021) p.1890

DOI: 10.3390/pr9111890

Google Scholar

[16] M. Bîrdeanu, M. Vaida, A.V. Bîrdeanu, E. Făgădar- Cosma: PLD deposited layers of pseudo-binary zinc oxides and zinc-porphyrin for steel corrosion inhibition Corrosion Vol 76 (2020), p.734–741

DOI: 10.5006/3550

Google Scholar

[17] J. Ryl, M.Brodowski, M. Kowalski, W. Lipinska, P. Niedzialkowski, J. Wysocka: Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media Materials Vol. 12 (2019), p.3067

DOI: 10.3390/ma12193067

Google Scholar

[18] M. Bîrdeanu, I. Fratilescu, C. Epuran, A.C. Murariu, G. Socol, E. Făgădar-Cosma: Efficient Decrease in Corrosion of Steel in 0.1 M HCl Medium Realized by a Coating with Thin Layers of MnTa2O6 and Porphyrins Using Suitable LaserType Approaches Nanomaterials Vol. 12 (2022), p.1118

DOI: 10.3390/nano12071118

Google Scholar

[19] A.A. Geană, A.C. Murariu, I.A. Perianu, G. Socol, G.F. Popescu-Pelin: Innovative Technologies to Improve the Corrosion Resistance of Stainless Steels Solid State Phenomena Vol. 332 (2022), p.123–131

DOI: 10.4028/p-jd9555

Google Scholar

[20] H.U. Krebs, M. Weisheit, J. Faupel, E. Süske, T. Scharf, C. Fuhse, M. Störmer, K. Sturm, M. Seibt, H. Kijewski, D. Nelke, E. Panchenko, M. Buback: Pulsed Laser Deposition (PLD) - A Versatile Thin Film Technique. In: Adv. in Solid State Phys. Vol. 43 (2003), p.505–517

DOI: 10.1007/978-3-540-44838-9_36

Google Scholar

[21] D. M. Bubb, P. K. Wu, J. S. Horwitz, J. H. Callahan, M. Galicia, A. Vertes, R. A. McGill, E. J. Houser, B. R. Ringeisen, and D. B. Chrisey: The effect of the matrix on film properties in matrix-assisted pulsed laser evaporation, Journal of Applied Physics Vol.91 (2002), pp.2055-2058

DOI: 10.1063/1.1427138

Google Scholar

[22] A. Piqué: The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process: origins and future directions Appl. Phys. A Vol. 105 (2011), p.517–528

DOI: 10.1007/s00339-011-6594-7

Google Scholar

[23] A. Piqué, R.A. McGill, D.B. Chrisey, D. Leonhardt, T.E. Mslna, B.J. Spargo, J.H. Callahan, R.W. Vachet, R. Chung, M.A. Bucaro: Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique Thin Solid Films Vol. 355–356 (1999), pp.536-541

DOI: 10.1016/s0257-8972(99)00376-x

Google Scholar

[24] M. Birdeanu, M. Vaida, E. Fagadar-Cosma: Hydrothermal synthesis of ZnTa2O6, ZnNb2O6, MgTa2O6 and MgNb2O6 pseudo-binary oxide nanomaterials with anticorrosive properties Manufacturing Rev. Vol. 7, 39 (2020), p.6

DOI: 10.1051/mfreview/2020037

Google Scholar

[25] E. Fagadar-Cosma, D. Vlascici, M. Birdeanu, G. Făgădar-Cosma: Novel fluorescent pH sensor based on 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin Arab.J. Chem. Vol. 12 (2019), p.1587–1594

DOI: 10.1016/j.arabjc.2014.10.011

Google Scholar

[26] D. Vlascici, E. Făgădar-Cosma, I. Popa, V. Chiriac, M. Gil-Agusti: A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins Sensors Vol. 12 (2012), p.8193–8203

DOI: 10.3390/s120608193

Google Scholar

[27] M. Birdeanu, C. Epuran, I. Fratilescu, E. Fagadar-Cosma: Structured Thin Films Based on Synergistic Effects of MnTa2O6 Oxide and bis-Carboxy-phenyl-substituted Porphyrins, Capable to Inhibit Steel Corrosion Processes Vol. 9 (2021), p.1890.

DOI: 10.3390/pr9111890

Google Scholar