Corrosion Fatigue of Standard Duplex Stainless Steel X2CrNiMoN22-5-3 under Rotation Bending Load in Northern German Basin Environment

Article Preview

Abstract:

Standard duplex stainless steel X2CrNiMoN22-5-3 is resistant to both, corrosion and mechanical stress, but corrosion fatigue (CF) lowers the lifetime expectancy in a geothermal environment such as the Northern German Basin. Laboratory experiments used the in-situ electrolyte at 369 K in a specifically designed corrosion chamber applying rotation bending cyclic load to failure. CF behaviour was compared to pure push-pull load. Corrosion kinetics are independent of the load applied. Failure is initiated by pits resulting in mechanical degradation. Increased thickness of the passivating layer surrounding pits enhances degradation or delamination. Also, sharp notches located along the pit edge increase notch effects and stress concentration consequently leading to fast crack propagation and early failure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 349)

Pages:

71-76

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wolf, A. Pfennig: IOP Conf. Ser.: Mater. Sci. Eng. (2020) 894 012015 93-98

Google Scholar

[2] I. Alvarez-Armas: Mech. Eng. 1 (2008), p.51–57

Google Scholar

[3] T. Prosek T et al.: Corrosion 70 (2014), p.1052–1063

Google Scholar

[4] S. Schultze, J. Göllner, K. Eick, P. Veit P, Heyse H.: Mater. Corros. 52 (2001), p.26–36

Google Scholar

[5] N. Arnold, P. Gümpel, T. W. Heitz T W.: Mater. Corros. 49 (1999), p- 140–145

Google Scholar

[6] J. P. Thomas, R. P. Wei.: Mater. Sci. Eng. A 159 (1992), p.205–221

Google Scholar

[7] L. J. Mu, W. Z. Zhao.: Corr. Sci. 52 (2010), p.82–89

Google Scholar

[8] Y. B. Unigovski, G. Lothongkum, E. M. Gutman, D. Alush, R. Cohen.: Corros. Sci. 51 (2009), p.3014–3020

DOI: 10.1016/j.corsci.2009.08.035

Google Scholar

[9] C. M. Holtam, D. P. Baxter, I. A. Ashcroft, R. C. Thomson.: Int. J. Fatigue 32 (2010), p.288–296

Google Scholar

[10] I. Thorbjörnsson.: Mater. Des. 16 (2009), p.97–102

Google Scholar

[11] A. Pfennig, M. Wolf, R. Wiegand, A. Kranzmann C.-P. Bork.: Energy Procedia 37 (2013), p.5764–5772

DOI: 10.1016/j.egypro.2013.06.499

Google Scholar

[12] A. Pfennig, M. Wolf, R. Wiegand, A. Kranzmann, C.-P. Bork.: Corros. Sci. 68 (2013), p.134–143

Google Scholar

[13] A. Pfennig, M. Wolf, K. Heynert, T. Böllinghaus. Energy Procedia 63 (2014), p.5773–5786

DOI: 10.1016/j.egypro.2014.11.610

Google Scholar

[14] R. Ebara.: Eng. Fail. Anal. 13 (2006), p.516–525

Google Scholar

[15] M. Wolf, A. Pfennig, T. Böllinghaus.: Energy Procedia 114 (2017), p.5337 – 5345

Google Scholar

[16] M. Wolf, R. Afanasiev, T. Böllinghaus, A. Pfennig,: 2019 GHGT-14. Available at SSRN: https://ssrn.com/abstract=3365578

Google Scholar

[17] A. Pfennig, A. Gröber A, R. Simkin, A. Kranzmann.: Matter: Int. J. Sci. and Tech. 5 (2019), pp.609-631

Google Scholar

[18] A. Pfennig, R. Simkin, A. Gröber, A. Kranzmann.: 2019 Green House Gas Emission Red. Techn. (GHGT14) Melbourne, Australia, 21st-26th October (2018)

Google Scholar

[19] A. Pfennig, A. Kranzmann.: Int. J. of Mat. Sci. and Eng. IJMSE 7/2 (2019), pp.26-33

Google Scholar

[20] A. Pfennig, M. Wolf.: Journal of Physics: Conf. Series (JPCS) (2020) 1425

Google Scholar

[21] A. Pfennig, M. Wolf.: In: Recent Trends in Chemical and Material Sciences 4 (2021), pp.62-68

DOI: 10.9734/bpi/rtcams/v4/14401D

Google Scholar

[22] A. Förster et al.: Mar. Pet. Geol. 27 (2010), p.2156–2172

Google Scholar

[23] A. Pfennig, A. Kranzmann.: Clean Technologies, 4(2) (2022), pp.239-257

DOI: 10.3390/cleantechnol4020014

Google Scholar

[24] A. Pfennig, M. Wolf, A. Kranzmann, Processes 9 (2021), p.594

DOI: 10.3390/pr9040594

Google Scholar

[26] E. May.: Etude de la tenue en fatigue d'un acier inoxydable pour l'aeronautique en milieu marin corrosif. Arts et Metiers ParisTech (2013)

Google Scholar

[27] W. D. Pilkey.: Peterson's Stress Concentration Factors. New York, John Wiley & Sons (2008)

Google Scholar

[28] A. Freiburg, W. Jiiger, J. Fliigge.: Fresenius J. of Analytical Chemistry 341 (1991), p.427–431

Google Scholar