Effect of Milling on Forest Residue-Derived Biochar with High Energy Milling Ellipse 3 Dimension

Article Preview

Abstract:

The research on the synthesis of nanoparticles using the high-energy ball milling method technique is limited in Indonesia. This work aims to reduce the size of the remaining biochar powder from the lignocellulosic residual forest (twig) into a nanoparticle. High-Energy Ball Milling-Ellipse 3 Dimension (HEM-E3D) was used to grind the biochar through 212 um mesh with time variations of 0, 2, 3, and 4 hours. The speed of the HEM-E3D is 180 rpm, while the milling on and off times are 10 minutes and 1 minute, respectively. The Particle Size Analyzer (PSA) characterization data show that 4 hours is the optimal milling time with 282,7 nm and evenly distributed particles. The morphology of powder biochar resemblant sheets and an average size of 205 nm at 60000x magnification. There were no discernible and damaged functional group alterations in the surface functional groups as determined by Fourier Transform Infrared Spectroscopy (FTIR). The adsorption experiment using a thin film method shows that powder biochar could reduce heavy metal concentrations of Cr (VI).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 349)

Pages:

103-108

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. of I. Ministry of Environment and Forestry, The State of Indonesia's Forest 2020. 2020.

Google Scholar

[2] M. I. Inyang et al., : Critical Reviews in Environmental Science and Technology Vol. 46 (2016), p.406–433.

Google Scholar

[3] W. Xiang et al., : Chemosphere Vol. 252 (2020), p.126539.

Google Scholar

[4] J. Deng et al., : Journal of Colloid and Interface Science.Vol. 506 (2017), p.355–364.

Google Scholar

[5] O. D. Nartey and B. Zhao : Advances in Materials Science and Engineering Vol. 2014 (2014), pp.1-12 (21067005)

Google Scholar

[6] P. Suresh Kumar, et al., : Chemical Engineering Journal Vol. 358 (2019), p.160–169.

Google Scholar

[7] M. G. Plaza, A. S. González, F. Rubiera, and C. Pevida, : Energy Procedia Vol. 63 (2014), p.693–702.

Google Scholar

[8] S. Garg and P. Das,: Biomass Conversion and Biorefinery Vol. 10 (2020) p.1043–1061 (4).

Google Scholar

[9] A.A. Azmi and M.A.A. Aziz,: Journal of Environmental Chemical Engineering Vol. 7 (2019), p.103022.

Google Scholar

[10] Y. Vieira, et al., : Gondwana Research Vol. 110 (2022), p.393–420.

Google Scholar

[11] N. Saman, M. U. Rashid, J. W. P. Lye, and H. Mat, : Reactive and Functional Polymers Vol. 123 (2018), p.106–114.

Google Scholar

[12] J. Briffa, E. Sinagra, and R. Blundell,: Heliyon Vol. 6 (2020), p. e04691.

Google Scholar

[13] M. Muhriz, A. Subagjo, and Pardoyo, Zeolite Nanoparticle Fabrication using High Energy Milling Method ( Trans Jurnal Sains dan Matematika, vol. 19 (2011), p.11–17.)

Google Scholar

[14] Aminatun, A. Supardi, Z. I. Nisa, D. Hikmawati, and Siswanto, : International Journal of Biomaterials Vol. 2019 ( 2019), pp.1-6.

Google Scholar

[15] Y. Li, L. Peng, and W. Li, : Adsorption Science and Technology Vol. 38 (2020), p.344–356.

Google Scholar

[16] L. Suárez-Hernández et al, : Revista Facultad de Ingeniería Vol. 26 (2017), p.123–130 (46).

Google Scholar

[17] M. Wu et al., : Scientific Reports Vol. 5 (2015), p.1–10.

Google Scholar

[18] B. Singh, et al.,: Soil Science of America Journal Vol. 80 (2016) p.613–622.

Google Scholar

[19] R. Janu et al., : Carbon Resources Conversion Vol. 4 (2021), p.36–46.

Google Scholar

[20] C. Xu, Q. Li, Z. Geng, F. Hu, and S. Zhao, : Chemosphere, Vol. 259 (2020), p.127510.

Google Scholar