The Effect of a Single Off-Center Shallow Donor Atom on the Binding Energy and Diamagnetic Susceptibility in a GaAs Horn Torus Quantum Dot

Article Preview

Abstract:

In this work, we have studied an electron confined in a GaAs Horn torus quantum dot in the presence of a shallow donor impurity. Using the effective mass approximation and by considering an infinite confinement potential, the Schrödinger equation was calculated by the finite difference method. The electron-impurity binding energy and the diamagnetic susceptibility are studied for different geometric sizes of the Horn torus. In addition, the effect of the radial and angular positions of the shallow donor impurity on the binding energy and the diamagnetic susceptibility are examined. The results show that the binding energy is much higher at small sizes of the nano system. Also, the diamagnetic susceptibility exhibits a symmetric behavior as a function of the angular position of the shallow impurity donor unlike that when the impurity moves radially. The influences of these parameter variants help us to better understand the effects of the size of the quantum dot and the position of the donor impurity, which improve the sensitive of the opto-electronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 349)

Pages:

133-144

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Forchel, H. Leier, B. E. Maile, R. Germann, Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures. Festkörperprobleme 28 (1988) 99-119.

DOI: 10.1007/bfb0107850

Google Scholar

[2] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, P. Petroff: Appl. Phys. Lett. 63 (1993) 3203

Google Scholar

[3] B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner: Chem. Phys. Lett. 329 (2000) 399.

Google Scholar

[4] R. F. Farrow, Molecular beam epitaxy: applications to key materials. Elsevier. (1995).

Google Scholar

[5] O. Mommadi, A. El Moussaouy, M. El Hadi, A. Nougaoui, Excitonic properties in an asymmetric quantum dot nanostructure under combined influence of temperature and lateral hydrostatic pressure, Materials Today: Proceedings. 13 (2019) 1023-1032.

DOI: 10.1016/j.matpr.2019.04.067

Google Scholar

[6] O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani, C. A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature and electric field effects, Philos Mag (Abingdon). 101(6) (2021) 753-775.

DOI: 10.1080/14786435.2020.1862430

Google Scholar

[7] O. Mommadi, A. El Moussaouy, M. Chnafi, M. El Hadi, A. Nougaoui, H. Magrez, Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field, Physica E Low Dimens. Syst. Nanostruct. 118 (2020) 113903.

DOI: 10.1016/j.physe.2019.113903

Google Scholar

[8] R. Boussetta, O. Mommadi, L. Belamkadem, S. Chouef, M. Hbibi, A. El Moussaouy, J.A. Vinasco, C.A. Duque, H. Satori, C. Kenfack-Sadem, R.M. Keumo Tsiaze, F.C. Fobasso Mbognou, A. Kerkour El-Miad, Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom, Micro and Nanostructures, Volume 165, 2022, 207209

DOI: 10.1016/j.micrna.2022.207209

Google Scholar

[9] G. A. Sh Mantashian, P. A. Mantashyan, D. B. Hayrapetyan,. Modelling of Quantum Dots with the Finite Element Method. (2022). arXiv preprint arXiv:2212.02212.

DOI: 10.3390/computation11010005

Google Scholar

[10] D. A. Miller, Quantum well optoelectronic switching devices. International Journal of High-Speed Electronics and Systems, (1990). 1(01), 19-46.

DOI: 10.1142/s0129156490000034

Google Scholar

[11] T. J. Thornton, Mesoscopic devices. Reports on Progress in Physics, (1995), 58(3), 311.

Google Scholar

[12] D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

Google Scholar

[13] S.N. Molotkov and S.S. Nazin, JETP Lett., 63, 687 (1996)

Google Scholar

[14] H. Sato, K. Nishi, I. Ogura, S. Sugou and Y. Sugimoto, Appl. Phys. Lett., 69, 3140 (1996)

Google Scholar

[15] R. Boussetta, O. Mommadi, L. Belamkadem, S. Chouef, M. Hbibi, A. El Moussaouy, J. A. Vinasco, A. K. El Miad Size Effect of Spindle Toroidal Quantum Dot on Electronic Properties. In Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2022, 20-22 May 2022, Saidia, Morocco (pp.263-269) (2023).. Singapore: Springer Nature Singapore.

DOI: 10.1007/978-981-19-6223-3_29

Google Scholar

[16] D. A. Baghdasaryan, D. B. Hayrapetyan, E. M. Kazaryan, H. A. Sarkisyan, Thermal and magnetic properties of electron gas in toroidal quantum dot, Physica E Low Dimens. Syst. Nanostruct. 101(2018)1-4.

DOI: 10.1016/j.physe.2018.03.009

Google Scholar

[17] M. Encinosa, J .Williamson, Wave functions for a toroidal quantum dot in the presence of an axially symmetric magnetic field: transition from ring to bulk states as a function of aspect ratio. arXiv preprint arXiv:1808.07443. (2018).

Google Scholar

[18] A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, P. M. Petroff, Spectroscopy of nanoscopic semiconductor rings. Physical review letters, (2000). 84(10), 2223

DOI: 10.1103/physrevlett.84.2223

Google Scholar

[19] M. Hbibi, O. Mommadi, S. Chouef, R. Boussetta, L. Belamkadem, A. El Moussaouy, F. Falyouni, C. M. Duque, J. A. Vinasco C. A. Duque Finite confinement potentials, core and shell size effects on excitonic and electron-atom properties in cylindrical core/shell/shell quantum dots

DOI: 10.1038/s41598-022-19118-3

Google Scholar

[20] M. Hbibi, O. Mommadi, R. Boussetta, S. Chouef, L. Belamkadem, A. El Moussaouy, Uncorrelated Excitonic Properties in Multilayered Cylindrical Quantum Dot. SSP 2022;335:43–52.

DOI: 10.4028/p-gh5bxa

Google Scholar

[21] S.V. Nistor, M. Stefan, L.C. Nistor, E. Goovaerts, G. VanTendeloo, Phys. Rev. B 81 (2010) 035336.

Google Scholar

[22] P.A. Sundqvist, V. Narayan, S. Stafstrom, M. Willander, Phys. Rev. B 67 (2003) ¨ 165330.

Google Scholar

[23] L. Belamkadem, O. Mommadi, J. A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C. A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E Low Dimens. Syst. Nanostruct. 129 (2021) 114642.

DOI: 10.1016/j.physe.2021.114642

Google Scholar

[24] M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J. A. Vinasco, D. Laroze, F. Mora-Rey, C. A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattices Microstruct. 159 (2021) 107052.

DOI: 10.1016/j.spmi.2021.107052

Google Scholar

[25] E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots, Superlattices Microstruct. 107142 (2022) 0749-6036

DOI: 10.1016/j.spmi.2021.107142

Google Scholar

[26] L. Belamkadem, O. Mommadi, R. Boussetta, M. Chnafi, J.A. Vinasco, D. Laroze, L.M. Pérez, A. El Moussaouy, Y.M. Meziani, E. Kasapoglu, V. Tulupenko, C.A. Duque, First Study on the Electronic and Donor Atom Properties of the Ultra-Thin Nanoflakes Quantum Dots. Nanomaterials 12 (2022) 966.

DOI: 10.3390/nano12060966

Google Scholar

[27] M. Salhi, A. Passian, G. Siopsis, Toroidal nanotraps for cold polar molecules. Physical Review A, 92 (2015) 033416.

DOI: 10.1103/physreva.92.033416

Google Scholar

[28] F. Beuerle, C. Herrmann, A.C. Whalley, C. Valente, A. Gamburd, M. Ratner, & J. F. Stoddart, Optical and vibrational properties of toroidal carbon nanotubes. Chemistry–A European Journal, 17 (2011) 3868-3875.

DOI: 10.1002/chem.201002758

Google Scholar

[29] S. Chouef, O. Mommadi, R. Boussetta, M. Hbibi, L. Belamkadem, A. El Moussaouy, et al. Impact of Electric Field Strength on the Binding Energy of an Off-Center Donor in Quantum Ring: Quarter Cross Section Case. In Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2022, 20-22 May 2022, Saidia, Morocco, pp.271-279. Singapore: Springer Nature Singapore, April 2023.

DOI: 10.1007/978-981-19-6223-3_30

Google Scholar

[30] G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132.

DOI: 10.1016/j.physe.2014.10.011

Google Scholar

[31] F. Dujardin, E. Assaid, E. Feddi, New way for determining electron energy levels in quantum dots arrays using finite difference method, Superlattices and Microstructures, Volume 118, (2018)

DOI: 10.1016/j.spmi.2018.04.027

Google Scholar