[1]
A. Forchel, H. Leier, B. E. Maile, R. Germann, Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures. Festkörperprobleme 28 (1988) 99-119.
DOI: 10.1007/bfb0107850
Google Scholar
[2]
D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, P. Petroff: Appl. Phys. Lett. 63 (1993) 3203
Google Scholar
[3]
B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner: Chem. Phys. Lett. 329 (2000) 399.
Google Scholar
[4]
R. F. Farrow, Molecular beam epitaxy: applications to key materials. Elsevier. (1995).
Google Scholar
[5]
O. Mommadi, A. El Moussaouy, M. El Hadi, A. Nougaoui, Excitonic properties in an asymmetric quantum dot nanostructure under combined influence of temperature and lateral hydrostatic pressure, Materials Today: Proceedings. 13 (2019) 1023-1032.
DOI: 10.1016/j.matpr.2019.04.067
Google Scholar
[6]
O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani, C. A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature and electric field effects, Philos Mag (Abingdon). 101(6) (2021) 753-775.
DOI: 10.1080/14786435.2020.1862430
Google Scholar
[7]
O. Mommadi, A. El Moussaouy, M. Chnafi, M. El Hadi, A. Nougaoui, H. Magrez, Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field, Physica E Low Dimens. Syst. Nanostruct. 118 (2020) 113903.
DOI: 10.1016/j.physe.2019.113903
Google Scholar
[8]
R. Boussetta, O. Mommadi, L. Belamkadem, S. Chouef, M. Hbibi, A. El Moussaouy, J.A. Vinasco, C.A. Duque, H. Satori, C. Kenfack-Sadem, R.M. Keumo Tsiaze, F.C. Fobasso Mbognou, A. Kerkour El-Miad, Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom, Micro and Nanostructures, Volume 165, 2022, 207209
DOI: 10.1016/j.micrna.2022.207209
Google Scholar
[9]
G. A. Sh Mantashian, P. A. Mantashyan, D. B. Hayrapetyan,. Modelling of Quantum Dots with the Finite Element Method. (2022). arXiv preprint arXiv:2212.02212.
DOI: 10.3390/computation11010005
Google Scholar
[10]
D. A. Miller, Quantum well optoelectronic switching devices. International Journal of High-Speed Electronics and Systems, (1990). 1(01), 19-46.
DOI: 10.1142/s0129156490000034
Google Scholar
[11]
T. J. Thornton, Mesoscopic devices. Reports on Progress in Physics, (1995), 58(3), 311.
Google Scholar
[12]
D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
Google Scholar
[13]
S.N. Molotkov and S.S. Nazin, JETP Lett., 63, 687 (1996)
Google Scholar
[14]
H. Sato, K. Nishi, I. Ogura, S. Sugou and Y. Sugimoto, Appl. Phys. Lett., 69, 3140 (1996)
Google Scholar
[15]
R. Boussetta, O. Mommadi, L. Belamkadem, S. Chouef, M. Hbibi, A. El Moussaouy, J. A. Vinasco, A. K. El Miad Size Effect of Spindle Toroidal Quantum Dot on Electronic Properties. In Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2022, 20-22 May 2022, Saidia, Morocco (pp.263-269) (2023).. Singapore: Springer Nature Singapore.
DOI: 10.1007/978-981-19-6223-3_29
Google Scholar
[16]
D. A. Baghdasaryan, D. B. Hayrapetyan, E. M. Kazaryan, H. A. Sarkisyan, Thermal and magnetic properties of electron gas in toroidal quantum dot, Physica E Low Dimens. Syst. Nanostruct. 101(2018)1-4.
DOI: 10.1016/j.physe.2018.03.009
Google Scholar
[17]
M. Encinosa, J .Williamson, Wave functions for a toroidal quantum dot in the presence of an axially symmetric magnetic field: transition from ring to bulk states as a function of aspect ratio. arXiv preprint arXiv:1808.07443. (2018).
Google Scholar
[18]
A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, P. M. Petroff, Spectroscopy of nanoscopic semiconductor rings. Physical review letters, (2000). 84(10), 2223
DOI: 10.1103/physrevlett.84.2223
Google Scholar
[19]
M. Hbibi, O. Mommadi, S. Chouef, R. Boussetta, L. Belamkadem, A. El Moussaouy, F. Falyouni, C. M. Duque, J. A. Vinasco C. A. Duque Finite confinement potentials, core and shell size effects on excitonic and electron-atom properties in cylindrical core/shell/shell quantum dots
DOI: 10.1038/s41598-022-19118-3
Google Scholar
[20]
M. Hbibi, O. Mommadi, R. Boussetta, S. Chouef, L. Belamkadem, A. El Moussaouy, Uncorrelated Excitonic Properties in Multilayered Cylindrical Quantum Dot. SSP 2022;335:43–52.
DOI: 10.4028/p-gh5bxa
Google Scholar
[21]
S.V. Nistor, M. Stefan, L.C. Nistor, E. Goovaerts, G. VanTendeloo, Phys. Rev. B 81 (2010) 035336.
Google Scholar
[22]
P.A. Sundqvist, V. Narayan, S. Stafstrom, M. Willander, Phys. Rev. B 67 (2003) ¨ 165330.
Google Scholar
[23]
L. Belamkadem, O. Mommadi, J. A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C. A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E Low Dimens. Syst. Nanostruct. 129 (2021) 114642.
DOI: 10.1016/j.physe.2021.114642
Google Scholar
[24]
M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J. A. Vinasco, D. Laroze, F. Mora-Rey, C. A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattices Microstruct. 159 (2021) 107052.
DOI: 10.1016/j.spmi.2021.107052
Google Scholar
[25]
E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots, Superlattices Microstruct. 107142 (2022) 0749-6036
DOI: 10.1016/j.spmi.2021.107142
Google Scholar
[26]
L. Belamkadem, O. Mommadi, R. Boussetta, M. Chnafi, J.A. Vinasco, D. Laroze, L.M. Pérez, A. El Moussaouy, Y.M. Meziani, E. Kasapoglu, V. Tulupenko, C.A. Duque, First Study on the Electronic and Donor Atom Properties of the Ultra-Thin Nanoflakes Quantum Dots. Nanomaterials 12 (2022) 966.
DOI: 10.3390/nano12060966
Google Scholar
[27]
M. Salhi, A. Passian, G. Siopsis, Toroidal nanotraps for cold polar molecules. Physical Review A, 92 (2015) 033416.
DOI: 10.1103/physreva.92.033416
Google Scholar
[28]
F. Beuerle, C. Herrmann, A.C. Whalley, C. Valente, A. Gamburd, M. Ratner, & J. F. Stoddart, Optical and vibrational properties of toroidal carbon nanotubes. Chemistry–A European Journal, 17 (2011) 3868-3875.
DOI: 10.1002/chem.201002758
Google Scholar
[29]
S. Chouef, O. Mommadi, R. Boussetta, M. Hbibi, L. Belamkadem, A. El Moussaouy, et al. Impact of Electric Field Strength on the Binding Energy of an Off-Center Donor in Quantum Ring: Quarter Cross Section Case. In Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2022, 20-22 May 2022, Saidia, Morocco, pp.271-279. Singapore: Springer Nature Singapore, April 2023.
DOI: 10.1007/978-981-19-6223-3_30
Google Scholar
[30]
G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132.
DOI: 10.1016/j.physe.2014.10.011
Google Scholar
[31]
F. Dujardin, E. Assaid, E. Feddi, New way for determining electron energy levels in quantum dots arrays using finite difference method, Superlattices and Microstructures, Volume 118, (2018)
DOI: 10.1016/j.spmi.2018.04.027
Google Scholar