[1]
O. Schauerte, Titanium in Automotive Production, Adv. Eng. Mater. 5 (2003) 411–418.
DOI: 10.1002/adem.200310094
Google Scholar
[2]
J. Li, J. Zhou, Y. Sun, A. Feng, X. Meng, S. Huang, Y. Sun, Study on mechanical properties and microstructure of 2024-T351 aluminum alloy treated by cryogenic laser peening, Opt. Laser Technol. 120 (2019) 105670.
DOI: 10.1016/j.optlastec.2019.105670
Google Scholar
[3]
O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R.S. Mishra, T.W. Scharf, Friction stir processing of A-286 stainless steel: Microstructural evolution during wear, Wear. 356–357 (2016) 94–100.
DOI: 10.1016/j.wear.2016.03.018
Google Scholar
[4]
H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, L. Zuo, The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel, Mater. Sci. Eng. A. 662 (2016) 356–362.
DOI: 10.1016/j.msea.2016.03.039
Google Scholar
[5]
B.Attard., A.Leyland., A.Matthews., EY.Gutmanas, I.Gotman, and G.Cassar., Improving the surface characteristics of Ti-6Al-4V and Timetal 834 using PIRAC nitriding treatments, J.Surface and Coatings Technology. 339(2018)208-223.
DOI: 10.1016/j.surfcoat.2018.01.051
Google Scholar
[6]
J.R. Deepak, V.B. Raja, K.A. Kumar, H.V. Radhakrishnan, and S.S. Thomas, Salt bath nitriding of CP Titanium Grade-2 and TI-6AL-4V Grade-5,J.Materials Science and Engineering 197(2017) 012-066).
DOI: 10.1088/1757-899x/197/1/012066
Google Scholar
[7]
K.Aniołek, Structure and properties of titanium and the Ti-6Al-7Nb alloy after isothermal oxidation. Surface Engineering, 36(2020)847-858.
DOI: 10.1080/02670844.2020.1711631
Google Scholar
[8]
S.Semboshi, S. Kimura, A. Iwase, and N. Ohtsu, Surface hardening of age-hardenable Cu-Ti dilute alloys by plasma nitriding, J. Surf. Coatings Technol., 258(2014)691–698.
DOI: 10.1016/j.surfcoat.2014.08.015
Google Scholar
[9]
A.V. Tyunkov, D.A. Golosov, D.B. Zolotukhin A.V. Nikonenko, E.M. Oks, Y.G. Yushkov, and E.V. Yakovlev,Nitriding of titanium in electron beam excited plasma in medium vacuum,J.Surface and Coatings Technology, 383(2020)125-241.
DOI: 10.1016/j.surfcoat.2019.125241
Google Scholar
[10]
J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak, A. Lisiecki, Laser modification of the materials surface layer-a review paper, Bull. Polish Acad. Sci. Tech. Sci. 60 (2012) 711–728.
DOI: 10.2478/v10175-012-0083-9
Google Scholar
[11]
J.D. Majumdar, I. Manna, Laser surface engineering of titanium and its alloys for improved wear, corrosion and high-temperature oxidation resistance, J. laser Surf. Eng. Process. Appl., Elsevier Inc., (2015)483–521.
DOI: 10.1016/B978-1-78242-074-3.00021-0
Google Scholar
[12]
R.Chaudhari, & R.Bauri, A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer, J. of Alloys and Compounds.744(2018)438–444
DOI: 10.1016/j.jallcom.2018.02.058
Google Scholar
[13]
V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117-134.
DOI: 10.1016/j.jmatprotec.2015.04.019
Google Scholar
[14]
B. Li, Y. Shen, L. Luo, W. Hu, Fabrication of TiCp/Ti-6Al-4V surface composite via friction stir processing (FSP): Process optimization, particle dispersion-refinement behavior and hardening mechanism, Mater. Sci. Eng. A. 574 (2013) 75–85.
DOI: 10.1016/j.msea.2013.03.019
Google Scholar
[15]
R.M. Miranda, T.G. Santos, J. Gandra, N. Lopes, R.J.C. Silva, Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, J. Mater. Process. Technol. 213 (2013) 1609–1615. https://doi.org/10.1016/j.jmatprotec. 2013.03.022.
DOI: 10.1016/j.jmatprotec.2013.03.022
Google Scholar
[16]
S. Katayama, A. Matsunawa, A. Morimoto, S. Ishimoto, and Y. Arata, Surface Hardening of Titanium by Laser Nitriding.,In LIA (Laser Institute of America),38(1984)127–134
DOI: 10.2351/1.5057471
Google Scholar
[17]
K. Monisha, S.A. Kumar, M. Gunaseelan, J. Senthilselvan, Super-hard coating creation by laser boriding technique, in: AIP Conf. Proc., American Institute of Physics Inc., 2017
DOI: 10.1063/1.4980549
Google Scholar
[18]
L.Xie, L. Wang, C. Jiang, W. Lu, The variations of microstructures and hardness of titanium matrix composite (TiB+TiC)/Ti-6Al-4V after shot peening, J.Surf. Coatings Technol,244 (2014) 69–77.
DOI: 10.1016/j.surfcoat.2014.01.053
Google Scholar
[19]
X. Zhang, W. Lü, D. Zhang, R. Wu, Y. Bian, P. Fang, In situ technique for synthesizing (TiB+TiC)/Ti composites, J. Scr. Mater. 41 (1999) 39–46.
DOI: 10.1016/S1359-6462(99)00087-1
Google Scholar
[20]
Y. Wang, M. Zhu, L. Dong, G. Sun, W. Zhang, H. Xue, Y. Fu, A. Elmarakbi, Y. Zhang, In-situ synthesized TiC/Ti-6Al-4V composites by elemental powder mixing and spark plasma sintering: Microstructural evolution and mechanical properties, Journal of Alloys and Compounds947 (2023) 169557.
DOI: 10.1016/j.jallcom.2023.169557
Google Scholar
[21]
B. Zheng, F. Dong, X. Yuan, Y. Zhang, H. HuangH, X. Zuo, Insights into wear behavior of ( TiC + TiB )/ TC4 composites against different counterface materials.
DOI: 10.1088/2053-1591/ab4bac
Google Scholar
[22]
N. Ashok, S. Rao, O. Mamat, A. Munir, and H. Syah, Morphological characterization , statistical modeling and wear behavior of AA7075-Titanium Carbide-Graphite surface composites via Friction stir processing,J. Mater. Res. Technol.,11(2021)2160–2180.
DOI: 10.1016/j.jmrt.2021.02.054
Google Scholar
[23]
G.Huang, J.Wang, Q.Wang, Y.Lv, Y.Han, W.Lu, Microstructures and mechanical properties of hot indirect extruded in situ (TiB + TiC)/Ti6Al4V composites: Effect of extrusion temperature,Materials Science and Engineering: A811 (2021) 140988.
DOI: 10.1016/j.msea.2021.140988
Google Scholar
[24]
Ö.N Doǧan, J.A Hawk, J.H Tylczak, R.D Wilson, R.D Govier,Wear of titanium carbide reinforced metal matrix composites,Wear225–229 (1999) 758-769.
DOI: 10.1016/s0043-1648(99)00030-7
Google Scholar
[25]
J.Qu, P.J. Blau, T.R. Watkins, O.B. Cavin, & N.S. Kulkarni,Friction and wear of titanium alloys sliding against metal , polymer , and ceramic counterfaces,258(2005)1348 1356.
DOI: 10.1016/j.wear.2004.09.062
Google Scholar
[26]
K. Praveenkumar, S. Swaroop, G. Manivasagam,Effect of multiple laser shock peening without coating on residual stress distribution and high temperature dry sliding wear behaviour of Ti-6Al-4 V alloy,Optics & Laser Technology 164 (2023)109398.
DOI: 10.1016/j.optlastec.2023.109398
Google Scholar
[27]
L. Zhou, X. Pan, X. Shi, T. Du, L. Wang, S. Luo, W. He, P. Chen,Research on surface integrity of Ti-6Al-4V alloy with compound treatment of laser shock peening and shot peening,Vacuum 196 (2022)110717.
DOI: 10.1016/j.vacuum.2021.110717
Google Scholar
[28]
J. Yu, J. Chen, H. Ho,Effect of laser cladding Ti/B4C/dr40-based composite coatings for the surface strengthening of shaft part,Optics & Laser Technology 157(2023) 108721
DOI: 10.1016/j.optlastec.2022.108721
Google Scholar
[29]
D. M. Seo, T. W. Hwang, Y. H. Moon, Carbonitriding of Ti-6Al-4V alloy via laser irradiation of pure graphite powder in nitrogen environment, Surface & Coatings Technology 364(2019) 244-254.
DOI: 10.1016/j.surfcoat.2019.02.038
Google Scholar