Surface Hardening of CP Ti by Laser Hardening and Development of Ti/TiC Surface Composite by Laser Sintering Technique for Wear Resistant Surface

Article Preview

Abstract:

This study deals with the hardening of titanium surface by carburising of CP Ti Gr 2 substrate by using laser sintering process. The objective of this project is to harden the surface to improve surface wear resistance of titanium. In this study graphite powder is used as source of Carbon. Carbon from graphite reacts with titanium and TiC layer of 109 micron was measured on the titanium surface. The microstructure and phase analysis results show that presence of only TiC phase on the surface of the titanium substrate. TiC grains are nearly 5 times finer than titanium substrate grains. Grain refinement of TiC phase all over the surface of the substrate resulted in increase in hardness and development of significant wear resistance surface in titanium substrate. Hardness of TiC layer was found to be 2191Hv which is nearly ten times higher than the substrate titanium. Wear test results of pin and disc type shows negligible wear rate as compared to CP Ti substrate. TiC grains are nearly 5 times finer than titanium substrate grains.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 350)

Pages:

51-61

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Schauerte, Titanium in Automotive Production, Adv. Eng. Mater. 5 (2003) 411–418.

DOI: 10.1002/adem.200310094

Google Scholar

[2] J. Li, J. Zhou, Y. Sun, A. Feng, X. Meng, S. Huang, Y. Sun, Study on mechanical properties and microstructure of 2024-T351 aluminum alloy treated by cryogenic laser peening, Opt. Laser Technol. 120 (2019) 105670.

DOI: 10.1016/j.optlastec.2019.105670

Google Scholar

[3] O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R.S. Mishra, T.W. Scharf, Friction stir processing of A-286 stainless steel: Microstructural evolution during wear, Wear. 356–357 (2016) 94–100.

DOI: 10.1016/j.wear.2016.03.018

Google Scholar

[4] H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, L. Zuo, The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel, Mater. Sci. Eng. A. 662 (2016) 356–362.

DOI: 10.1016/j.msea.2016.03.039

Google Scholar

[5] B.Attard., A.Leyland., A.Matthews., EY.Gutmanas, I.Gotman, and G.Cassar., Improving the surface characteristics of Ti-6Al-4V and Timetal 834 using PIRAC nitriding treatments, J.Surface and Coatings Technology. 339(2018)208-223.

DOI: 10.1016/j.surfcoat.2018.01.051

Google Scholar

[6] J.R. Deepak, V.B. Raja, K.A. Kumar, H.V. Radhakrishnan, and S.S. Thomas, Salt bath nitriding of CP Titanium Grade-2 and TI-6AL-4V Grade-5,J.Materials Science and Engineering 197(2017) 012-066).

DOI: 10.1088/1757-899x/197/1/012066

Google Scholar

[7] K.Aniołek, Structure and properties of titanium and the Ti-6Al-7Nb alloy after isothermal oxidation. Surface Engineering, 36(2020)847-858.

DOI: 10.1080/02670844.2020.1711631

Google Scholar

[8] S.Semboshi, S. Kimura, A. Iwase, and N. Ohtsu, Surface hardening of age-hardenable Cu-Ti dilute alloys by plasma nitriding, J. Surf. Coatings Technol., 258(2014)691–698.

DOI: 10.1016/j.surfcoat.2014.08.015

Google Scholar

[9] A.V. Tyunkov, D.A. Golosov, D.B. Zolotukhin A.V. Nikonenko, E.M. Oks, Y.G. Yushkov, and E.V. Yakovlev,Nitriding of titanium in electron beam excited plasma in medium vacuum,J.Surface and Coatings Technology, 383(2020)125-241.

DOI: 10.1016/j.surfcoat.2019.125241

Google Scholar

[10] J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak, A. Lisiecki, Laser modification of the materials surface layer-a review paper, Bull. Polish Acad. Sci. Tech. Sci. 60 (2012) 711–728.

DOI: 10.2478/v10175-012-0083-9

Google Scholar

[11] J.D. Majumdar, I. Manna, Laser surface engineering of titanium and its alloys for improved wear, corrosion and high-temperature oxidation resistance, J. laser Surf. Eng. Process. Appl., Elsevier Inc., (2015)483–521.

DOI: 10.1016/B978-1-78242-074-3.00021-0

Google Scholar

[12] R.Chaudhari, & R.Bauri, A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer, J. of Alloys and Compounds.744(2018)438–444

DOI: 10.1016/j.jallcom.2018.02.058

Google Scholar

[13] V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117-134.

DOI: 10.1016/j.jmatprotec.2015.04.019

Google Scholar

[14] B. Li, Y. Shen, L. Luo, W. Hu, Fabrication of TiCp/Ti-6Al-4V surface composite via friction stir processing (FSP): Process optimization, particle dispersion-refinement behavior and hardening mechanism, Mater. Sci. Eng. A. 574 (2013) 75–85.

DOI: 10.1016/j.msea.2013.03.019

Google Scholar

[15] R.M. Miranda, T.G. Santos, J. Gandra, N. Lopes, R.J.C. Silva, Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, J. Mater. Process. Technol. 213 (2013) 1609–1615. https://doi.org/10.1016/j.jmatprotec. 2013.03.022.

DOI: 10.1016/j.jmatprotec.2013.03.022

Google Scholar

[16] S. Katayama, A. Matsunawa, A. Morimoto, S. Ishimoto, and Y. Arata, Surface Hardening of Titanium by Laser Nitriding.,In LIA (Laser Institute of America),38(1984)127–134

DOI: 10.2351/1.5057471

Google Scholar

[17] K. Monisha, S.A. Kumar, M. Gunaseelan, J. Senthilselvan, Super-hard coating creation by laser boriding technique, in: AIP Conf. Proc., American Institute of Physics Inc., 2017

DOI: 10.1063/1.4980549

Google Scholar

[18] L.Xie, L. Wang, C. Jiang, W. Lu, The variations of microstructures and hardness of titanium matrix composite (TiB+TiC)/Ti-6Al-4V after shot peening, J.Surf. Coatings Technol,244 (2014) 69–77.

DOI: 10.1016/j.surfcoat.2014.01.053

Google Scholar

[19] X. Zhang, W. Lü, D. Zhang, R. Wu, Y. Bian, P. Fang, In situ technique for synthesizing (TiB+TiC)/Ti composites, J. Scr. Mater. 41 (1999) 39–46.

DOI: 10.1016/S1359-6462(99)00087-1

Google Scholar

[20] Y. Wang, M. Zhu, L. Dong, G. Sun, W. Zhang, H. Xue, Y. Fu, A. Elmarakbi, Y. Zhang, In-situ synthesized TiC/Ti-6Al-4V composites by elemental powder mixing and spark plasma sintering: Microstructural evolution and mechanical properties, Journal of Alloys and Compounds947 (2023) 169557.

DOI: 10.1016/j.jallcom.2023.169557

Google Scholar

[21] B. Zheng, F. Dong, X. Yuan, Y. Zhang, H. HuangH, X. Zuo, Insights into wear behavior of ( TiC + TiB )/ TC4 composites against different counterface materials.

DOI: 10.1088/2053-1591/ab4bac

Google Scholar

[22] N. Ashok, S. Rao, O. Mamat, A. Munir, and H. Syah, Morphological characterization , statistical modeling and wear behavior of AA7075-Titanium Carbide-Graphite surface composites via Friction stir processing,J. Mater. Res. Technol.,11(2021)2160–2180.

DOI: 10.1016/j.jmrt.2021.02.054

Google Scholar

[23] G.Huang, J.Wang, Q.Wang, Y.Lv, Y.Han, W.Lu, Microstructures and mechanical properties of hot indirect extruded in situ (TiB + TiC)/Ti6Al4V composites: Effect of extrusion temperature,Materials Science and Engineering: A811 (2021) 140988.

DOI: 10.1016/j.msea.2021.140988

Google Scholar

[24] Ö.N Doǧan, J.A Hawk, J.H Tylczak, R.D Wilson, R.D Govier,Wear of titanium carbide reinforced metal matrix composites,Wear225–229 (1999) 758-769.

DOI: 10.1016/s0043-1648(99)00030-7

Google Scholar

[25] J.Qu, P.J. Blau, T.R. Watkins, O.B. Cavin, & N.S. Kulkarni,Friction and wear of titanium alloys sliding against metal , polymer , and ceramic counterfaces,258(2005)1348 1356.

DOI: 10.1016/j.wear.2004.09.062

Google Scholar

[26] K. Praveenkumar, S. Swaroop, G. Manivasagam,Effect of multiple laser shock peening without coating on residual stress distribution and high temperature dry sliding wear behaviour of Ti-6Al-4 V alloy,Optics & Laser Technology 164 (2023)109398.

DOI: 10.1016/j.optlastec.2023.109398

Google Scholar

[27] L. Zhou, X. Pan, X. Shi, T. Du, L. Wang, S. Luo, W. He, P. Chen,Research on surface integrity of Ti-6Al-4V alloy with compound treatment of laser shock peening and shot peening,Vacuum 196 (2022)110717.

DOI: 10.1016/j.vacuum.2021.110717

Google Scholar

[28] J. Yu, J. Chen, H. Ho,Effect of laser cladding Ti/B4C/dr40-based composite coatings for the surface strengthening of shaft part,Optics & Laser Technology 157(2023) 108721

DOI: 10.1016/j.optlastec.2022.108721

Google Scholar

[29] D. M. Seo, T. W. Hwang, Y. H. Moon, Carbonitriding of Ti-6Al-4V alloy via laser irradiation of pure graphite powder in nitrogen environment, Surface & Coatings Technology 364(2019) 244-254.

DOI: 10.1016/j.surfcoat.2019.02.038

Google Scholar