Atomic Force Microscopy Characterization of Polyacrylamide Substrate for Traction Force Application

Article Preview

Abstract:

Atomic Force Microscopy (AFM) technology has ushered researchers to directly observe surface topology and the substrate mechanical properties using specialized probe. AFM is one of the microscopic techniques with the highest lateral resolution which can be employed in air or even in liquids. In this experiment, we characterized the local elastic properties of the polyacrylamide (PA) hydrogel using Atomic Force Microscopy (AFM). PA consists of huge units of an organic acrylamide monomers which can be saturated to form a highly water-swollen hydrogel. The hydrogel offers tunable density with a high degree of pliability which depends of its applications. Such applications of PA hydrogel can be in cell substrate studies and measurement of cell-generated forces. Our results with AFM measurement yielded force-distance curves were used to determine the elastic behaviour of the polyacrylamide (PA) hydrogel. Analysis has shown that 15% w/v PA hydrogel concentration has Young’s modulus, Yav=1608.9 ± 1.3 kPa (n=8) and transverse stiffness, Kav=88.7 ± 9.7 μN/nm (n=8) at Thus, elasticity measurements has provided useful insights for the future experiment on traction force microscopy with amoeboid organism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 352)

Pages:

15-23

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nemir, J.L, West, Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng., 38 (2009) 2–20.

DOI: 10.1007/s10439-009-9811-1

Google Scholar

[2] E. Gutierrez and A. Groisman, Measurements of elastic moduli of silicone gel substrates with a microfluidic device. PLoS ONE, 6 (2011) e25534.

DOI: 10.1371/journal.pone.0025534

Google Scholar

[3] J. Solon, I. Levental, K. Sengupta, P.C. Georges, P.A. Janmey, Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 193 (2007) 4453–4461.

DOI: 10.1529/biophysj.106.101386

Google Scholar

[4] M.L. Byron, and E.A. Variano, Refractive-index-matched hydrogel materials for measuring flow-structure interactions. Exp Fluids, 54 (2013) 1456, http://

DOI: 10.1007/s00348-013-1456-z

Google Scholar

[5] C.E. Kandow, P.A. Janmey, and K.A. Benigno, Polyacrylamide hydrogels for cell mechanics. Methods Cell Biol. 83 (2007) 29-46.

DOI: 10.1016/s0091-679x(07)83002-0

Google Scholar

[6] R.J. Pelham and Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Nat Acad Sci USA, 94 (1997) 13661–13665.

DOI: 10.1073/pnas.94.25.13661

Google Scholar

[7] A.J. Engler, L. Bacakova, C. Newman, A. Hategan, et al., Substrate compliance versus ligand density in cell on gel responses. Biophys J. 56 (2004) 617–628.

DOI: 10.1016/s0006-3495(04)74140-5

Google Scholar

[8] T. Boudou, J. Ohayon, C. Picart and P. Tracqui,. An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology, 43 (2006) 721– 728.

Google Scholar

[9] A. Engler, L. Richer, J.Y. Wong, C. Picart and D.E. Disher, Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion. Surface Science, 570 (2004) 142-154.

DOI: 10.1016/j.susc.2004.06.179

Google Scholar

[10] L. Liqi Fangt, and W. Brown, Dynamic properties of polyacrylamide gels and solutions. Polymer, 31 (1990) 1960-1967.

Google Scholar

[11] V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard, New insight into agarose gel mechanical properties. Biomacromolecules, 1 (2000) 730–738.

DOI: 10.1021/bm005583j

Google Scholar

[12] S.R. Peyton and A.J. Putnam, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol, 204 (2005) 198–209.

DOI: 10.1002/jcp.20274

Google Scholar

[13] J. Schramm-Baxter, J. Katrencik and S. Mitragotri, Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech, 37 (2004) 1181–1188.

DOI: 10.1016/j.jbiomech.2003.12.006

Google Scholar

[14] R.M. Delaine-Smitha, S. Burneya, F.R. Balkwillb and M.M. Knight, Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics. J Mech Behav Biomed Matter. 60 (2016) 401–415.

DOI: 10.1016/j.jmbbm.2016.02.019

Google Scholar

[15] H.J. Kong, E. Wong E and D.J. Mooney, Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules., 36 (2003) 4582–4588.

DOI: 10.1021/ma034137w

Google Scholar

[16] N.A. Hammond and R.D. Kamm, Mechanical characterization of self-assembling peptide hydrogels by microindentation. J Biomed Matter Res B, 101 (2013) 981–990.

DOI: 10.1002/jbm.b.32906

Google Scholar

[17] D.C. Lin DC, B. Yurke and N.A. Langrana, Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater Res. 20 (2005) 1456–1464.

DOI: 10.1557/jmr.2005.0186

Google Scholar

[18] D.C. Lin, B. Yurke and N.A. Langrana, Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng., 126 (2004) 104–110.

DOI: 10.1115/1.1645529

Google Scholar

[19] C.M. Buffinton, K.J. Tong, R.A. Blaho, E.M. Buffinton and D.M. Ebenstein, Comparison of mechanical testing methods for biomaterials: pipette aspiration, nanoindentation, and macroscale testing. J Mech Behav Biomed Mater, 51 (2015) 367–379.

DOI: 10.1016/j.jmbbm.2015.07.022

Google Scholar

[20] T. Boudou, J. Ohayon, C. Picart and P. Tracqui, An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology, 43 (2006) 721–728.

Google Scholar

[21] Y. Abidine, V.M. Laurent, R. Michel, A. Duperray, L.L. Palade and C. Verdier, Physical properties of polyacrylamide gels probed by AFM and rheology. EPL, 109 (2015) 38003.

DOI: 10.1209/0295-5075/109/38003

Google Scholar

[22] J.G. Jacot, S. Dianis J., Schnall and J.Y. Wong, A simple microindentation technique for mapping the microscale compliance of soft hydrated materials and tissues. J Biomed Mater Res A, 79 (2006) 485–494.

DOI: 10.1002/jbm.a.30812

Google Scholar

[23] F.M. Hecht, J. Rheinlaender, N. Schierbaum, W.H. Goldmann, B. Fabry and T.E. Schaffer, Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter, 11 (2015) 4584.

DOI: 10.1039/c4sm02718c

Google Scholar

[24] Y. Abidine, V.M. Laurent, R. Michel, A. Duperray and C. Verdier, Comput. Methods Biomech. Biomed. Eng. 16 (2013) 15.

Google Scholar

[25] M.G. Ondeck and A.J. Engler, Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J Biomech Eng., 138 (2016) 021003.

DOI: 10.1115/1.4032429

Google Scholar

[26] C. Franck, S.A. Maskarinec, D.A. Tirrell and G. Ravichandran, Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions. PLoS ONE., 6 (2011) 3 e17833.

DOI: 10.1371/journal.pone.0017833

Google Scholar

[27] B. Álvarez-González, S. Zhang, M. Gómez-González, R. Meili, R.A. Firtel, J.C. Lasheras and J.C. del Álamo, Two-Layer Elastographic 3-D Traction Force Microscopy. Scientific Reports, 7 (2017) 39315.

DOI: 10.1038/srep39315

Google Scholar

[28] S. Oura, M. Ito, D. Nii, Y. Homma and K. Umemura, Biomolecular recognition ability of RecA proteins for DNA on singled-walled carbon nanotubes, Colloids and Surf. B: Biointerfaces, 126 (2015) 496-501.

DOI: 10.1016/j.colsurfb.2015.01.002

Google Scholar

[29] S. Awasthi, J.K. Gaur, M.S. Bobji, et al. Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. J Mater Sci (2022) 57, 8041–8063.

DOI: 10.1007/s10853-022-07146-3

Google Scholar

[30] J. Zemla, J. Bobrowska, A. Kubiak, T. Zielinski, J. Pabijan, K. Pogola, P. Bobrowski, M. Lekka, Indenting Soft Samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip, European Biophysics Journal (2020) 49:485-495

DOI: 10.1007/s00249-020-01456-7

Google Scholar

[31] R. L. Reserva, J.L.D C. Filipinas, M.J. Y. Jerez and M.N.P. Confesor, Non-equilibrium tracer dynamics in an oscillating active gel, Physica A (2022) 603 127812

DOI: 10.1016/j.physa.2022.127812

Google Scholar

[32] M. J. Y. Jerez, M.A. Bonachita and M.N.P. Confesor, Dyanmics of a rachet gear powered by an active granular bath, PRE 101 (2020)

DOI: 10.1103/physreve.101.022604

Google Scholar