Sunlight-Mediated Synthesis of Metallic Silver Nanoparticles with Coffee (Robusta/Arabica) Pulp Aqueous Extract for Hg2+ Ion Detection

Article Preview

Abstract:

On-site and portable detection of heavy metals, especially in water, is critical for public health safety. Mercury is a toxic heavy metal and poses environmental and health hazard concerns causing neurological and behavioral disorders. Metallic nanoparticles possess unique optical properties, which can be used for heavy metal sensing applications. In this study, a colorimetric method for detecting mercury using silver nanoparticles was developed. The reduction of Ag+ to AgNP was initiated using sunlight with coffee pulp aqueous extract as a reducing agent. The UV-Vis spectrum of the as-prepared AgNP solution shows a maximum absorption peak at 433 nm due to the metal’s localized surface plasmon resonance (LSPR). The SEM analysis of the dried sample shows an aggregate of AgNPs with spherical morphology with diameters less than 100 nm. The dynamic light scattering distribution curve shows a bimodal peak with a mean hydrodynamic radius of 12.73 nm and 145 nm, respectively. The large hydrodynamic radius of more than 100 nm may be attributed to the presence of AgNP aggregates in the solution. The synthesized AgNP was shown to selectively detect Hg2+ ions in solution colorimetrically. A linear calibration curve was obtained for the Hg2+ solution between 0.04 mM and 0.2 mM with R2 equal to 0.9934. This proposed method can potentially be used in the analysis of actual water samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 352)

Pages:

3-14

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Molecular, clinical and environmental toxicicology Volume 3: Environmental Toxicology. Molecular, Clinical and Environmental Toxicology, 101, 133–164

DOI: 10.1007/978-3-7643-8340-4

Google Scholar

[2] Nogara, P.A., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Mercury in Our Food. Chemical Research in Toxicology, 32 (8), 1459–1461. https://doi.org/10.1021/acs.chemrestox. 9b00126

DOI: 10.1021/acs.chemrestox.9b00126

Google Scholar

[3] Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25(1), 1–24.

DOI: 10.3109/10408449509089885

Google Scholar

[4] Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. Journal of Environmental and Public Health, 2012

DOI: 10.1155/2012/460508

Google Scholar

[5] Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., … Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865

DOI: 10.1016/j.jksus.2022.101865

Google Scholar

[6] Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., & Tian, G. (2018). A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta, 178(July 2017), 324–338

DOI: 10.1016/j.talanta.2017.08.033

Google Scholar

[7] Du, J., Jiang, L., Shao, Q., Liu, X., Marks, R. S., Ma, J., & Chen, X. (2013). Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small, 9(9–10), 1467–1481

DOI: 10.1002/smll.201200811

Google Scholar

[8] Budlayan, M. L., Dalagan, J., Lagare-Oracion, J. P., Patricio, J., Arco, S., Latayada, F., … Capangpangan, R. (2022). Detecting mercury ions in water using a low-cost colorimetric sensor derived from immobilized silver nanoparticles on a paper substrate. Environmental Nanotechnology, Monitoring and Management, 18(August), 100736

DOI: 10.1016/j.enmm.2022.100736

Google Scholar

[9] Liu, D., Qu, W., Chen, W., Zhang, W., Wang, Z., & Jiang, X. (2010). Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry, 82(23), 9606–9610

DOI: 10.1021/ac1021503

Google Scholar

[10] Zou, Y., Pang, J., Zhang, F., & Chai, F. (2021). Silver Nanoparticles for Colorimetric Detection and Discrimination of Mercury Ions in Lake Water. ChemistrySelect, 6(24), 6077–6082

DOI: 10.1002/slct.202101389

Google Scholar

[11] Sangaonkar, G. M., Desai, M. P., Dongale, T. D., & Pawar, K. D. (2020). Selective interaction between phytomediated anionic silver nanoparticles and mercury leading to amalgam formation enables highly sensitive, colorimetric and memristor-based detection of mercury. Scientific Reports, 10(1), 1–12

DOI: 10.1038/s41598-020-58844-4

Google Scholar

[12] Klingel, T., Kremer, J. I., Gottstein, V., & Rezende, T. R. De. (2020). A Review of Coffee By-Products Including Leaf ,. Foods, 9, 1–20.

Google Scholar

[13] Hemlata, Meena, P. R., Singh, A. P., & Tejavath, K. K. (2020). Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines. ACS Omega, 5(10), 5520–5528

DOI: 10.1021/acsomega.0c00155

Google Scholar

[14] Rajkumar, G., & Sundar, R. (2022). Sonochemical-assisted eco-friendly synthesis of silver nanoparticles (AgNPs) using avocado seed extract: Naked-eye selective colorimetric recognition of Hg2+ ions in aqueous medium. Journal of Molecular Liquids, 368, 120638

DOI: 10.1016/j.molliq.2022.120638

Google Scholar

[15] Kalam, A., Al-Sehemi, A. G., Alrumman, S., Du, G., Pannipara, M., Assiri, M., … Moustafa, M.F. (2017). Colorimetric Sensing of Toxic Metal and Antibacterial Studies by Using Bioextract Synthesized Silver Nanoparticles. Journal of Fluorescence, 27(6), 2045–2050

DOI: 10.1007/s10895-017-2143-x

Google Scholar

[16] Some, S., Bulut, O., Biswas, K., Kumar, A., Roy, A., Sen, I. K., … Ocsoy, I. (2019). Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Scientific Reports, 9(1), 1–13

DOI: 10.1038/s41598-019-50906-6

Google Scholar

[17] Rezazadeh, N. H., Buazar, F., & Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Scientific Reports, 10(1), 1–13

DOI: 10.1038/s41598-020-76726-7

Google Scholar

[18] Mittal, A.K., Bhaumik, J., Kumar, S., & Banerjee, U. C. (2014). Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 415, 39–47

DOI: 10.1016/j.jcis.2013.10.018

Google Scholar

[19] Parmar, A., Kaur, G., Kapil, S., Sharma, V., Choudhary, M. K., & Sharma, S. (2019). Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: A cleaner approach towards environmental remediation and combating bacterial invasion., Materials Chemistry and Physics, 238(July), 121861

DOI: 10.1016/j.matchemphys.2019.121861

Google Scholar

[20] Wan Mat Khalir, W. K. A., Shameli, K., Jazayeri, S. D., Othman, N. A., Che Jusoh, N. W., & Hassan, N. M. (2020). Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of Entada spiralis and Screening of Their Biomedical Activity. Frontiers in Chemistry, 8

DOI: 10.3389/fchem.2020.00620

Google Scholar

[21] Azimpanah, R., Solati, Z., & Hashemi, M. (2018). Green synthesis of silver nanoparticles and their applications as colorimetric probe for determination of Fe3+ and Hg2+ ions. IET Nanobiotechnology, 12(5), 673–677

DOI: 10.1049/IET-NBT.2017.0236

Google Scholar

[22] Sarkar, P. K., Halder, A., Polley, N., & Pal, S. K. (2017). Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring. Water, Air, and Soil Pollution, 228(8), 1–11

DOI: 10.1007/s11270-017-3479-1

Google Scholar

[23] Demirezen Yılmaz, D., Aksu Demirezen, D., & Mıhçıokur, H. (2021). Colorimetric detection of mercury ion using chlorophyll functionalized green silver nanoparticles in aqueous medium. Surfaces and Interfaces, 22(September 2020), 100840

DOI: 10.1016/j.surfin.2020.100840

Google Scholar

[24] Narayanan, K. B., & Han, S. S. (2017). Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles. Carbohydrate Polymers, 160, 90–96

DOI: 10.1016/j.carbpol.2016.12.055

Google Scholar

[25] Lobregas, M. O. S., Bantang, J. P. O., & Camacho, D. H. (2019). Carrageenan-stabilized silver nanoparticle gel probe kit for colorimetric sensing of mercury (II) using digital image analysis. Sensing and Bio-Sensing Research, 26(September)

DOI: 10.1016/j.sbsr.2019.100303

Google Scholar

[26] Ghosh, S., Maji, S., & Mondal, A. (2018). Study of selective sensing of Hg2+ ions by green synthesized silver nanoparticles suppressing the effect of Fe3+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555(April), 324–331

DOI: 10.1016/j.colsurfa.2018.07.012

Google Scholar

[27] Jeevika, A., & Shankaran, D. R. (2022). Shape dependent interaction of silver nanostructures with mercury for its sensing applications. Optik, 270(January), 170041

DOI: 10.1016/j.ijleo.2022.170041

Google Scholar