Study on the Deformation Mechanism of a Nonequiatomic AlCrMnFeNi High-Entropy Alloy at Cold and Warm Temperatures

Article Preview

Abstract:

High-entropy alloys (HEAs) have led to breakthroughs in materials science due to their superior properties and the challenge of achieving the high strength and high ductility trade-off. Microstructural evolution during cold and warm compression tests of the single-phase Al8Cr12Mn25Fe35Ni20 high entropy alloy (Fe-HEA) is investigated in the present work. The current study assesses the effect of temperature on the mechanical properties and deformation mechanism of the face-centered cubic structure Fe-HEA. The arc-melted ingot is homogenized at 1473 K and then directly hot-rolled to break the cast structure of the alloy prior to testing procedures. Fe-HEA is tested through uniaxial compressive testing at three different selected temperatures: 293, 473, and 673 K utilizing a Gleeble thermo-mechanical simulator at a strain rate of 0.001 s-1. The compressive behavior at 673 K showed a higher strain hardening exponent when compared to 293 and 473 K. The deformed microstructural features of the compressed and quenched specimens, deformation mechanism, and phase revolution are investigated with X-ray diffraction (XRD) and electron backscattered diffraction (EBSD). Dislocation densities for the deformed conditions were estimated to be 4.11 × 1014 and 5.39 × 1014 m-2 for the 473 and 673 K deformed conditions, respectively. At a deformation temperature of 673 K, B2 precipitation is observed at the high-angle grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 353)

Pages:

19-24

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering A. 375–377 (2004) 213–218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv Eng Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[3] J.P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Materials Science and Engineering: A. 645 (2015) 255–263.

DOI: 10.1016/j.msea.2015.08.024

Google Scholar

[4] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743–5755.

DOI: 10.1016/j.actamat.2013.06.018

Google Scholar

[5] S. Gorsse, J.P. Couzinié, D.B. Miracle, From high-entropy alloys to complex concentrated alloys, C R Phys. 19 (2018) 721–736.

DOI: 10.1016/j.crhy.2018.09.004

Google Scholar

[6] A.W. Abdelghany, M. Jaskari, A.S. Hamada, A. Järvenpää, H.A. El-Hofy, A. Chiba, M.A.-H. Gepreel, Hot deformation behavior and constitutive modeling of a cost-effective Al8Cr12Mn25Ni20Fe35 high-entropy alloy, J Alloys Compd. 928 (2022) 167028.

DOI: 10.1016/j.jallcom.2022.167028

Google Scholar

[7] J.W. Won, M. Kang, H.J. Kwon, K.R. Lim, S.M. Seo, Y.S. Na, Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling, Metals and Materials International. 24 (2018) 1432–1437.

DOI: 10.1007/s12540-018-0129-0

Google Scholar

[8] X.-L. Ma, K. Matsugi, Z.-F. Xu, Y.-B. Choi, R. Matsuzaki, J. Hu, X.-G. Liu, H. Huang, Applicability of As-Cast on ¢ Type Titanium Alloys Proposed in the Compositional Region with Different Tensile Deformation Types, (2019).

DOI: 10.2320/matertrans.f-m2019848

Google Scholar

[9] S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening, Mater Des. 181 (2019) 0–10.

DOI: 10.1016/j.matdes.2019.108064

Google Scholar

[10] J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, J. Qiao, Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling, Materials Science and Engineering: A. 707 (2017) 593–601.

DOI: 10.1016/j.msea.2017.09.089

Google Scholar

[11] R.L. Narayan, P.S. Singh, D.C. Hofmann, N. Hutchinson, K.M. Flores, U. Ramamurty, On the microstructure–tensile property correlations in bulk metallic glass matrix composites with crystalline dendrites, Acta Mater. 60 (2012) 5089–5100.

DOI: 10.1016/j.actamat.2012.06.032

Google Scholar

[12] P. Thirathipviwat, G. Song, J. Bednarcik, U. Kühn, T. Gemming, K. Nielsch, J. Han, Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems, Progress in Natural Science: Materials International. 30 (2020) 545–551.

DOI: 10.1016/j.pnsc.2020.07.002

Google Scholar

[13] C. Suryanarayana, M.G. Norton, X-Ray Diffraction, (1998).

Google Scholar

[14] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187–196.

DOI: 10.1016/j.actamat.2015.08.076

Google Scholar

[15] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187–196.

DOI: 10.1016/j.actamat.2015.08.076

Google Scholar