[1]
S. Prakash and S. Kumar, "Fabrication of microchannels: A review," Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 8, p.1273–1288, Aug. 2015, doi: 10.1177/ 0954405414535581/ASSET/IMAGES/LARGE/10.1177_0954405414535581-FIG5.JPEG.
Google Scholar
[2]
A. Joy, K. V. Shiblemon, and B. Baby, "Review on fabrication and experimental study of microchannel heat sinks for cooling of electronic components," Mater. Today Proc., 2022.
DOI: 10.1016/j.matpr.2022.08.186
Google Scholar
[3]
B. K. Paul, H. Hasan, T. Dewey, D. Alman, and R. D. Wilson, "An Evaluation of Two Methods for Producing Intermetallic Microchannels," ASME Int. Mech. Eng. Congr. Expo. Proc., p.261–266, Jun. 2008.
DOI: 10.1115/IMECE2002-32892
Google Scholar
[4]
S. M. Scott and Z. Ali, "Fabrication Methods for Microfluidic Devices: An Overview," Micromachines 2021, Vol. 12, Page 319, vol. 12, no. 3, p.319, Mar. 2021.
DOI: 10.3390/MI12030319
Google Scholar
[5]
A. Mogra, S. K. Verma, and T. Thomas, "Fabrication of square microchannel for experimental investigation of two phase flow using conventional machining process," Perspect. Sci., vol. 8, p.231–233, Sep. 2016.
DOI: 10.1016/J.PISC.2016.04.036
Google Scholar
[6]
T. Kikuchi, Y. Wachi, M. Sakairi, and R. O. Suzuki, "Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution," Microelectron. Eng., vol. 111, p.14–20, Nov. 2013, doi: 10.1016/ J.MEE.2013.05.007.
DOI: 10.1016/j.mee.2013.05.007
Google Scholar
[7]
M. M. Simone Tanzi, Peter Friis Østergaard, R. M. Thomas Lehrmann Christiansen, Jiri Cech, and and R. Taboryski, "Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process," 2012.
DOI: 10.1088/0960-1317/22/11/115008
Google Scholar
[8]
H. Zhou, J. Lee, M. Kang, H. Kim, H. Lee, and J. Bin In, "All laser-based fabrication of microchannel heat sink," Mater. Des., vol. 221, p.110968, Sep. 2022.
DOI: 10.1016/J.MATDES.2022.110968
Google Scholar
[9]
O. F. Biswas, A. Sen, I. Shivakoti, and G. Kibria, "Parametric Influences on Heat Affected Zone in Micro-channel Milling Process of Zirconia Ceramic," Period. Polytech. Mech. Eng., vol. 65, no. 2, p.189–196, Mar. 2021.
DOI: 10.3311/PPME.17527
Google Scholar
[10]
B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, "Femtosecond and picosecond laser microablation: Ablation efficiency and laser microplasma expansion," Appl. Phys. A Mater. Sci. Process., vol. 69, no. 7, p.381–383, 1999.
DOI: 10.1007/s003390051421
Google Scholar
[11]
B. Guo, J. Sun, Y. Hua, N. Zhan, J. Jia, and K. Chu, "Femtosecond Laser Micro/Nano-manufacturing: Theories, Measurements, Methods, and Applications," Nanomanufacturing and Metrology, vol. 3, no. 1. Springer Science and Business Media B.V., p.26–67, Mar. 01, 2020.
DOI: 10.1007/s41871-020-00056-5
Google Scholar
[12]
R. Mccann, K. Bagga, R. Groarke, and A. Stalcup, "Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd : YAG laser ablation," Appl. Surf. Sci., vol. 387, p.603–608, 2016.
DOI: 10.1016/j.apsusc.2016.06.059
Google Scholar
[13]
U. Sarma and S. N. Joshi, "Machining of micro-channels on polycarbonate by using Laser-Induced Plasma Assisted Ablation (LIPAA)," Opt. Laser Technol., vol. 128, Aug. 2020.
DOI: 10.1016/J.OPTLASTEC.2020.106257
Google Scholar
[14]
D. Pramanik, S. Das, S. Sarkar, S. K. Debnath, A. S. Kuar, and S. Mitra, "Experimental Investigation of Fiber Laser Micro-Marking on Aluminum 6061 Alloy," p.273–294, 2019.
DOI: 10.1007/978-3-319-96968-8_13
Google Scholar
[15]
T. Kar, S. S. Deshmukh, and A. Goswami, "Investigation of fiber laser micro-channel depth on silicon wafer," Mater. Today Proc., vol. 60, p.2105–2110, Jan. 2022.
DOI: 10.1016/J.MATPR.2022.02.024
Google Scholar
[16]
Y. Yalikun, Y. Hosokawa, T. Iino, and Y. Tanaka, "An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing," Lab Chip, vol. 16, no. 13, p.2427–2433, Jun. 2016.
DOI: 10.1039/C6LC00132G
Google Scholar
[17]
P. Mukherjee, X. Wang, J. Zhou, and I. Papautsky, "Lab on a Chip Single stream inertial focusing in low aspect-ratio triangular microchannels," vol. 19, p.147, 2019.
DOI: 10.1039/c8lc00973b
Google Scholar
[18]
N. Nivedita, P. Ligrani, and I. Papautsky, "Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels," Sci. Reports 2017 71, vol. 7, no. 1, p.1–10, Mar. 2017, doi: 10.1038/ srep44072.
DOI: 10.1038/srep44072
Google Scholar
[19]
S. Shen et al., "Ultra-low aspect ratio spiral microchannel with ordered micro-bars for flow-rate insensitive blood plasma extraction," Sensors Actuators, B Chem., vol. 287, p.320–328, May 2019.
DOI: 10.1016/J.SNB.2019.02.066
Google Scholar