[1]
L. Pawlowski, The science and engineering of thermal spray coatings, Wiley, Chichester 1995.
Google Scholar
[2]
B.G. Mellor, Surface coatings for protection against wear, Woodhead Publishing Limited, Cambridge, 2006.
Google Scholar
[3]
L.M. Berger, Application of hardmetals as thermal spray coatings, International Journal of Refractory Metals and Hard Materials 49 (2015) 350–364.
DOI: 10.1016/j.ijrmhm.2014.09.029
Google Scholar
[4]
H.M. Ortner, P. Ettmayer, H. Kolaska, The history of the technological progress of hardmetals, International Journal of Refractory Metals and Hard Materials 44 (2014) 148–159.
DOI: 10.1016/j.ijrmhm.2013.07.014
Google Scholar
[5]
G. Bolelli, L.M. Berger, M. Bonetti, L. Lusvarghi, Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hardmetal coatings, Wear 309 (2014) 96–111.
DOI: 10.1016/j.wear.2013.11.001
Google Scholar
[6]
A.H. Tkaczyk, A. Bartl, A. Amato, V. Lapkovskis, M. Petranikova, Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements, J. Phys. D. Appl. Phys. 51 (2018) 203001.
DOI: 10.1088/1361-6463/aaba99
Google Scholar
[7]
M. Suh, C.M. Thompson, G.P. Brorby, L. Mittal, D.M. Proctor, Inhalation cancer risk assessment of cobalt metal, Regul. Toxicol. Pharmacol. 79 (2016) 74–82.
DOI: 10.1016/j.yrtph.2016.05.009
Google Scholar
[8]
G. Bolelli, A. Colella, L. Lusvarghi, S. Morelli, P. Puddu, E. Righetti, P. Sassatelli, V. Testa, TiC–NiCr thermal spray coatings as an alternative to WC-CoCr and Cr3C2–NiCr, Wear 450–451 (2020) 203273.
DOI: 10.1016/j.wear.2020.203273
Google Scholar
[9]
R. A. Govande, A. Chandak, B. R. Sunil, R. Dumpala, Carbide-based thermal spray coatings: A review on performance characteristics and post-treatment, International Journal of Refractory Metals and Hard Materials 103 (2022) 105772.
DOI: 10.1016/j.ijrmhm.2021.105772
Google Scholar
[10]
V. Testa, S. Morelli, G. Bolelli, F. Bosi, P. Puddu, A. Colella, T. Manfredini, L. Lusvarghi, Corrosion and wear performances of alternative TiC-based thermal spray coatings, Surface and Coatings Technology 438 (2022) 128400.
DOI: 10.1016/j.surfcoat.2022.128400
Google Scholar
[11]
G.N. Komratov, Kinetics of oxidation SHS of titanium carbide and titanium and chromium double carbide powders in air. Powder Metall. Met. Ceram. 32 (1993) 509–511.
DOI: 10.1007/bf00560730
Google Scholar
[12]
A.P. Umanskii, V.P. Konoval, A.D. Panasyuk, et al. Plasma coatings of (TiCrC)-(FeCr) composite powder alloys: Structure and properties, Powder Metall Met Ceram. 46 (2007)133–138.
DOI: 10.1007/s11106-007-0022-8
Google Scholar
[13]
O. Umanskyi, M. Storozhenko, M., Baglyuk, G. et al. Structure and Wear Resistance of Plasma-Sprayed NiCrBSiC–TiCrC Composite Powder Coatings, Powder Metall. Met. Ceram. 59 (2020) 434–444.
DOI: 10.1007/s11106-020-00177-y
Google Scholar
[14]
I.N. Gorbatov, N. S. Il'chenko, A. S. Terent'ev, et al. Effect of cladding double titanium-chrome carbide on the properties of plasma-sprayed coatings, Fiz. Khim. Obrab. Mater. (in Russian) 3 (1991) 69–73.
Google Scholar
[15]
V.B. Raitses, Litvin, V.M., Rutberg, V.P. et al. Wear-resistant plasma coatings based on a double carbide of titanium and chromium. Powder Metall. Met. Ceram. 25 (1986) 827–828.
DOI: 10.1007/bf00801430
Google Scholar
[16]
O. Umanskyi, M. Storozhenko, T. Chevychelova, V. Varchenko, V. Brazhevsky, O. Chernyshov, O. Terentiev, I. Martsenyuk, K. Haltsov, O. Bondarenko, Structure and wear-behavior of (Ti,Cr)C-Ni thermal-sprayed coatings, Solid State Phenomena 331 (2022) 151–156.
DOI: 10.4028/p-t1o0v1
Google Scholar
[17]
Y.S. Borisov, A.L. Borisova; M.V. Kolomytsev, O.P. Masyuchok, I.I. Timofeeva; M.A. Vasilkovskaya, High-velocity air plasma spraying of (Ti, Cr)C–32 wt.% Ni clad powder. Powder Metall. Met. Ceram. 56 (2017) 305–315.
DOI: 10.1007/s11106-017-9898-0
Google Scholar
[18]
Wei Su, Yexi Sun, Jue Liu, Jiao Feng, Jianming Ruan, Effects of Ni on the microstructures and properties of WC–6Co cemented carbides fabricated by WC–6(Co, Ni) composite powders, Ceramics International, 41 (2015) 3169–3177.
DOI: 10.1016/j.ceramint.2014.10.165
Google Scholar
[19]
O.P. Umanskyi, O.Ye. Terentiev, M.S. Storozhenko, G.A. Baglyuk, V.B. Muratov, O. O. Vasiliev, V.Ye. Sheludko, Wetting and interfacial interaction in TiCrC−Ni system, Functional materials 3 (2021) 1–6.
Google Scholar
[20]
M.S. Storozhenko, O.P. Umanskyi, G.A. Baglyuk, V.P. Brazhevskyi, O.O. Chernyshov, O.A. Bondarenko, I.S. Martsenyuk, Clad TiCrC(Ni) Composite powders for thermal spraying of coatings, Powder Metall. Met. Ceram. 60 (2021). P. 1–6.
DOI: 10.1007/s11106-021-00209-1
Google Scholar
[21]
O.Р. Umanskyi, O.Ye. Terentiev, M.S. Storozhenko, O. Yu. Koval, Yu.V. Gubin, V.P. Brazhevskyi, O.O. Chernyshov, Effect of plasma spraying parameters on the properties of (Ti, Cr)C–Ni composite coatings, Powder Metall. Met. Ceram. 68 (2023). P. 1–6.
DOI: 10.1007/s11106-023-00348-7
Google Scholar