[1]
Wang, D., Zhong, Q., Yang, J., & Zhang, S. (2023). Effects of Cr and Ni on the microstructure and corrosion resistance of high-strength low alloy steel. Journal of Materials Research and Technology.
DOI: 10.1016/j.jmrt.2022.12.191
Google Scholar
[2]
Zhang, Y., Wang, Y., Zhi, X., Li, B., & Ouyang, Y. (2023). Tests on slip resistant behaviour of aluminium alloy-stainless steel faying surfaces. Journal of Constructional Steel Research, 202, 107762.
DOI: 10.1016/j.jcsr.2022.107762
Google Scholar
[3]
Zhang, T., Liu, W., Sun, Y., Dong, B., Yang, W., & Chen, L. (2023). Investigating the corrosion resistance of Cu-doped Ni-Mo low alloy steel through electrochemical tests. Corrosion Communications.
DOI: 10.1016/j.corcom.2022.12.001
Google Scholar
[4]
Papavinasam, S. (2013). Corrosion control in the oil and gas industry. Elsevier. 2: 22-45
Google Scholar
[5]
Singh, A. P., & Srivastava, C. (2023). Understanding the non-monotonic variation in the corrosion rate of Sn-Ni coatings with Ni addition by the analysis of texture and grain boundary constitution of the matrix phase and spatial distribution of the intermetallic phase in the coating microstructure. Corrosion Science, 211, 110787.
DOI: 10.1016/j.corsci.2022.110787
Google Scholar
[6]
Cabrera-Correa, L., Gonzalez-Rovira, L., de Dios Lopez-Castro, J., & Botana, F. J. (2022). Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by selective laser melting (SLM). Corrosion Science, 201, 110273.
DOI: 10.1016/j.corsci.2022.110273
Google Scholar
[7]
Sotoodeh, K. (2022). Cryogenic Valves for Liquefied Natural Gas Plants. Elsevier.4:333-440
Google Scholar
[8]
Fu, Q., Wang, C., Wu, C., Wu, Y., Dai, X., Jin, W., ... & Yu, Z. (2022). Investigating the combined effects of wide stacking faults and grain size on the mechanical properties and corrosion resistance of high-purity Mg. Journal of Alloys and Compounds, 927, 167018
DOI: 10.1016/j.jallcom.2022.167018
Google Scholar
[9]
Gupta, A., & Yan, D. S. (2016). Mineral processing design and operations: an introduction. Elsevier.
Google Scholar
[10]
Yu, Z., Zeng, D., Hu, S., Zhou, X., Lu, W., Luo, J., .. & Meng, K. (2022). The failure patterns and analysis process of drill pipes in oil and gas well: A case study of fracture S135 drill pipe. Engineering Failure Analysis, 138, 106171.
DOI: 10.1016/j.engfailanal.2022.106171
Google Scholar
[11]
Wu, X., Zhang, H., Yang, M., Jia, W., Qiu, Y., & Lan, L. (2022)., Experimental study of hydrogen embrittlement in high-strength pipeline steels. International Journal of Hydrogen Energy. 11:2(2) 200
DOI: 10.1016/j.ijhydene.2021.12.108
Google Scholar
[12]
Zhang, H., Xu, J., Guo, L., & Dong, H. (2023). Study on rust layers of carbon steel, weathering steel and alloy steel exposed to Shanghai atmosphere for three years. Materials Today Communications, 35, 105520.
DOI: 10.1016/j.mtcomm.2023.105520
Google Scholar
[13]
Soleimani, M., Mirzadeh, H., & Dehghanian, C. (2020). Effect of grain size on the corrosion resistance of low carbon steel. Materials Research Express, 7(1), 016522.
DOI: 10.1088/2053-1591/ab62fa
Google Scholar
[14]
Xue, L., Ding, Y., Pradeep, K. G., Case, R., Castaneda, H., & Paredes, M. (2022). The grain size effect on corrosion property of Al2Cr5Cu5Fe53Ni35 high-entropy alloy in marine environment. Corrosion Science, 208, 110625.
DOI: 10.2139/ssrn.4157016
Google Scholar
[15]
Jin, Q. I. N., Zhi, L. I., YI, D. Q., & Bin, W. A. N. G. (2022). Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes. Transactions of Nonferrous Metals Society of China, 32(3), 765-777.
DOI: 10.1016/s1003-6326(22)65831-x
Google Scholar
[16]
Quan, S., Song, R., Su, S., Huang, Y., Cai, C., Wang, Y., & Wang, K. (2023). Grain boundary engineering prepared by iterative thermomechanical processing of nickel-saving austenitic stainless steel: Excellent corrosion resistance and mechanical properties. Materials Characterization, 196, 112601.
DOI: 10.1016/j.matchar.2022.112601
Google Scholar
[17]
Luo, X., Wei, Y., Shen, J., Ma, N., & Li, C. J. (2023). Breaking the tradeoff between corrosion resistance and fatigue lifetime of the coated Mg alloy through cold spraying submicron-grain Al alloy coatings. Journal of Magnesium and Alloys.
DOI: 10.1016/j.jma.2022.12.011
Google Scholar
[18]
Zou, G., Wang, Q., Wang, G., Liu, W., Zhang, S., Ai, Z., & Song, D. (2023). Revealing excellent passivation performance of a novel Cr-alloyed steel rebar in carbonized concrete environment. Journal of Materials Research and Technology, 23, 1848-1861
DOI: 10.1016/j.jmrt.2023.01.118
Google Scholar
[19]
Patel, S. N., Singh, D. K., Akula, D. P., Adhikary, M., & Kumar, A. (2022). Investigation of catastrophic failure of API grade pipes used for hydraulic oil in an Integrated Steel Plant. Engineering Failure Analysis, 138, 106336.
DOI: 10.1016/j.engfailanal.2022.106336
Google Scholar
[20]
Kantyukov, R., Ryakhovskikh, I., & Kashkovskiy, R. (2021). The impact of internal stratifications on the performance of oil and gas pipes. Engineering Failure Analysis, 120, 105091.
DOI: 10.1016/j.engfailanal.2020.105091
Google Scholar
[21]
Sun, Z., Niu, D., Wang, X., Zhang, L., & Luo, D. (2022). Bond behavior of coral aggregate concrete and corroded Cr alloy steel bar. Journal of Building Engineering, 61, 105294.
DOI: 10.1016/j.jobe.2022.105294
Google Scholar
[22]
Sedmak, A., Arsić, M., Šarkoćević, Ž, Medjo, B., Rakin, M., Arsić, D., & Lazić, V. (2020). Remaining strength of API J55 steel casing pipes damaged by corrosion. International Journal of Pressure Vessels and Piping, 188, 104230.
DOI: 10.1016/j.ijpvp.2020.104230
Google Scholar
[23]
Yu, H., Peng, X., Lian, Z., Shi, T., Wang, J., & Zhao, Z. (2022). Experimental and numerical simulation of fatigue corrosion behavior of V150 high-strength drill pipe in air and H2S-dilling mud environment. Journal of Natural Gas Science and Engineering, 98, 104392.
DOI: 10.1016/j.jngse.2021.104392
Google Scholar
[24]
Sobanke, H., Das, S., Song, P., & Yoosef-Ghodsi, N. (2021). Behaviour of wrinkled thin-walled steel pipes subjected to displacement-controlled axial cyclic loads. Thin-Walled Structures, 168, 108269.
DOI: 10.1016/j.tws.2021.108269
Google Scholar
[25]
Santos, E. A. D., Giorgetti, V., Souza Junior, C. A. D., Marcomini, J. B., Sordi, V. L., & Rovere, C. A. D. (2022). Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment. International Journal of Pressure Vessels and Piping, 200, 1-12.
DOI: 10.1016/j.ijpvp.2022.104846
Google Scholar
[26]
Savaedi, Z., Mirzadeh, H., Aghdam, R. M., & Mahmudi, R. (2022). Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium. Journal of Materials Research and Technology, 19, 3100-3109.
DOI: 10.1016/j.jmrt.2022.06.048
Google Scholar
[27]
Ponkratov, Y. V., Samarkhanov, K. K., Baklanov, V. V., Gordienko, Y. N., Kenzhina, I. E., Bochkov, V. S., ... & Saparbek, E. (2023). Investigation of the interaction of liquid tin-lithium alloy with austenitic stainless steel at high temperatures. Fusion Engineering and Design, 191, 113560.
DOI: 10.1016/j.fusengdes.2023.113560
Google Scholar
[28]
Ohaeri, E. G., & Szpunar, J. A. (2022). An overview pipeline steel development for cold climate applications. Journal of Pipeline Science and Engineering. 9: 2 (3) 1050-2000
DOI: 10.1016/j.jpse.2022.01.003
Google Scholar
[29]
Yang, Y., Tong, L., Yin, S., Liu, Y., Wang, L., Qiu, Y., & Ding, Y. (2022). Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality. Journal of Cleaner Production, 134347.
DOI: 10.1016/j.jclepro.2022.134347
Google Scholar
[30]
Zhong, L., Tang, J., Yang, R., Yan, H., Cai, Q., & Zhou, T. (2022). Changing the grain size of FeSiAl powders to improve corrosion resistance and wave absorbing property. Journal of Magnetism and Magnetic Materials, 558, 169524.
DOI: 10.1016/j.jmmm.2022.169524
Google Scholar
[31]
Zaki, A., Chai, H. K., Aggelis, D. G., & Alver, N. (2015). Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors, 15(8), 19069-19101.
DOI: 10.3390/s150819069
Google Scholar
[32]
Zhu, Y., Hu, B., Hu, T., Xia, D., Huang, Y., & Xu, Y. (2023). Probing and evaluating non-uniform corrosion behavior of pipe weldment using an array of coupled multi-ring form electrical resistance sensor. Measurement, 112479.
DOI: 10.1016/j.measurement.2023.112479
Google Scholar
[33]
Wang, F., Xue, X., Hua, J., Chen, Z., Huang, L., Wang, N., & Jin, J. (2022). Non-uniform corrosion influences on mechanical performances of stainless-clad bimetallic steel bars. Marine Structures, 86, 103276.
DOI: 10.1016/j.marstruc.2022.103276
Google Scholar
[34]
Ouyang, J., & Gao, Y. (2022). Dense nanoarrays LDHs film evenly dividing the Cl− diffusion path into longitudinal microchannels in favor of quasi-uniform corrosion of biomedical magnesium alloys. Surface and Coatings Technology, 449, 128981.
DOI: 10.1016/j.surfcoat.2022.128981
Google Scholar
[35]
Tan, X., Fan, L., Huang, Y., & Bao, Y. (2021). Detection, visualization, quantification, and warning of pipe corrosion using distributed fiber optic sensors. Automation in Construction, 132, 103953.
DOI: 10.1016/j.autcon.2021.103953
Google Scholar
[36]
Li, J., Lin, B., Zheng, H., Wang, Y., Zhang, H., Zhang, Y., & Tang, J. (2023). Study on pitting corrosion behavior and semi in-situ pitting corrosion growth model of 304 L SS with elastic stress in NaCl corrosion environment. Corrosion Science, 211, 110862.
DOI: 10.1016/j.corsci.2022.110862
Google Scholar
[37]
Farfan-Cabrera, L. I., Rodríguez-Bravo, G. A., Godínez-Salcedo, J. G., Resendiz-Calderon, C. D., Salgado-Sviercovich, J. S., & Moreno-Ríos, M. (2021). A crevice corrosion assessment method for joints of mechanical components sealed with composite structure gaskets–The case of the engine cylinder head/mono-block joint. Engineering Failure Analysis, 119, 104981.
DOI: 10.1016/j.engfailanal.2020.104981
Google Scholar
[38]
Prabhuraj, P., Rajakumar, S., Sonar, T., Ivanov, M., Rajkumar, I., & Raja, D. E. (2022). Effect of retrogression and reaging (RRA) on pitting and stress corrosion cracking (SCC) resistance of stir zone of high strength AA7075-T651 alloy joined by friction stir welding. International Journal of Lightweight Materials and Manufacture.
DOI: 10.1016/j.ijlmm.2022.12.002
Google Scholar
[39]
Shang, B., Lei, L., Wang, X., He, P., Yuan, X., Dai, W., ... & Sun, Y. (2022). Effects of grain boundary characteristics changing with cold rolling deformation on intergranular corrosion resistance of 443 ultra-pure ferritic stainless steel. Corrosion Communications, 8, 27-39. [40]
DOI: 10.1016/j.corcom.2022.07.002
Google Scholar
[40]
Guo, H., Wei, H., Li, G., & Sun, F. (2021). Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel. Journal of Constructional Steel Research, 184, 106801
DOI: 10.1016/j.jcsr.2021.106801
Google Scholar
[41]
Chen, X., Chen, J., Zhan, D., Chen, S., Liang, J., & Wang, M. (2022). Microstructure evolution and strength-toughness matching mechanism of Fe-Cr-Ni gradient alloy steel prepared by direct laser deposition. Materials Science and Engineering: A, 856, 143931.
DOI: 10.1016/j.msea.2022.143931
Google Scholar
[42]
Guillal, A., Seghier, M. E. A. B., Nourddine, A., Correia, J. A., Mustaffa, Z. B., & Trung, N. T. (2020). Probabilistic investigation on the reliability assessment of mid-and high-strength pipelines under corrosion and fracture conditions. Engineering Failure Analysis, 118, 104891.
DOI: 10.1016/j.engfailanal.2020.104891
Google Scholar
[43]
Tong, K., Bai, X. L., Fan, Z. H., Cheng, L., Lyu, J. J., Han, X. L., & Qu, T. T. (2022). Analysis and investigation of the leakage failure on the shale gas gathering and transmission pipeline. Engineering Failure Analysis, 140, 106599.
DOI: 10.1016/j.engfailanal.2022.106599
Google Scholar
[44]
Siciliano, F., Stalheim, D. G., & Gray, J. M. (2008, January). Modern high strength steels for oil and gas transmission pipelines. In International Pipeline Conference (Vol. 48593, pp.187-195).
DOI: 10.1115/ipc2008-64292
Google Scholar
[45]
Sharma, S. K., & Maheshwari, S. (2017). A review on welding of high strength oil and gas pipeline steels. Journal of Natural Gas Science and Engineering, 38, 203-217.
DOI: 10.1016/j.jngse.2016.12.039
Google Scholar
[46]
Brahim, A.O., Belaidi, I., Khatir, S., Le Thanh, C., Mirjalili, S., & Wahab, M. A. (2023). Strength prediction of a steel pipe having a hemi-ellipsoidal corrosion defect repaired by GFRP composite patch using artificial neural network. Composite Structures, 304, 116299
DOI: 10.1016/j.compstruct.2022.116299
Google Scholar
[47]
Ohaeri, E., Eduok, U., & Szpunar, J. (2018). Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy, 43(31), 14584-14617.
DOI: 10.1016/j.ijhydene.2018.06.064
Google Scholar
[48]
Arzaghi, E., Chia, B. H., Abaei, M. M., Abbassi, R., & Garaniya, V. (2020). Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines. Process Safety and Environmental Protection, 141, 135-139.
DOI: 10.1016/j.psep.2020.05.024
Google Scholar
[49]
Malíková, L., Doubek, P., Juhászová, T., Klusák, J., & Seitl, S. (2022). Interaction of a fatigue crack and a corrosion dimple in a high-strength steel specimen. Procedia Structural Integrity, 42, 1082-1089.
DOI: 10.1016/j.prostr.2022.12.137
Google Scholar
[50]
Guo, Y., Shao, Y., Gao, X., Li, T., Zhong, Y., & Luo, X. (2022). Corrosion fatigue crack growth of serviced API 5L X56 submarine pipeline. Ocean Engineering, 256, 111502.
DOI: 10.1016/j.oceaneng.2022.111502
Google Scholar
[51]
Liu, L., & Case, R. (2022). The effect of H2S and NaCl concentration on hydrogen permeation in high strength low alloy carbon steel C110. Corrosion Engineering, Science and Technology, 57(2), 132-139.
DOI: 10.1080/1478422x.2021.1998956
Google Scholar
[52]
Liu, L., & Case, R. (2022). The influence of H2S on hydrogen absorption and sulfide stress cracking resistance of high strength low alloy carbon steel C110. Journal of Natural Gas Science and Engineering, 99, 104418.
DOI: 10.1016/j.jngse.2022.104418
Google Scholar
[53]
Zheng, Z., Shao, S., Xu, M., Ma, R., Du, A., Fan, Y., ... & Cao, X. (2023). Microstructure and properties of WC–Co cemented carbide/40Cr steel joints brazed at low–temperature with Ag–Cu–In–Ti filler alloy. International Journal of Refractory Metals and Hard Materials, 111, 106092.
DOI: 10.1016/j.ijrmhm.2022.106092
Google Scholar
[54]
Li, Y., Ding, S., Bai, Z., Wang, S., Zhang, F., Zhang, J., ... & Yang, J. (2022). Corrosion characteristics and mechanisms of typical iron/nickel-based alloys in reductive supercritical water environments containing sulfides. The Journal of Supercritical Fluids, 187, 105599.
DOI: 10.1016/j.supflu.2022.105599
Google Scholar