[1]
T. Wang, X. Zha, F. Chen, J. Wang, Y. Li, F. Jiang, Mechanical impact test methods for hard coatings of cutting tools: a review, Int. J. of Adv. Manuf. Technol. 115 (2021) 1367-1385.
DOI: 10.1007/s00170-021-07219-8
Google Scholar
[2]
I. Saravanan, A. Devaraju, Wear mechanism of UHMWPE polymer composites for bio medical applications, Mater. Res. Express. 6 (2019) 105355.
DOI: 10.1088/2053-1591/ab3ed9
Google Scholar
[3]
Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, L. Wang, One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields, Corros. Sci. 147 (2019) 9-21.
DOI: 10.1016/j.corsci.2018.10.034
Google Scholar
[4]
R.K. Singh Raman, A. Tiwari, Graphene: The thinnest known coating for corrosion protection, JOM. 66 (2014) 637-642.
DOI: 10.1007/s11837-014-0921-3
Google Scholar
[5]
D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: corrosion-inhibiting coating, ACS nano. 6 (2012) 1102-1108.
DOI: 10.1021/nn203507y
Google Scholar
[6]
G. Bierwagen, Corrosion and its control by coatings, in ACS Symposium Series; American Chemical Society, Washington, DC (1998) 1-8.
Google Scholar
[7]
L. Mishnaevsky, S. Fæster, L.P. Mikkelsen, Y. Kusano, J.I. Bech, Micromechanisms of leading edge erosion of wind turbine blades: X‐ray tomography analysis and computational studies, Wind. Energy. 23 (2020) 547-562.
DOI: 10.1002/we.2441
Google Scholar
[8]
M. Reguzzoni, A. Fasolino, E. Molinari, M.C. Righi, Friction by shear deformations in multilayer graphene. J. Phys. Chem. C. 116 (2012) 21104- 21108.
DOI: 10.1021/jp306929g
Google Scholar
[9]
A. Klemenz, L. Pastewka, S.G. Balakrishna, A. Caron, R. Bennewitz, M. Moseler, Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano let. 14 (2014) 7145-7152.
DOI: 10.1021/nl5037403
Google Scholar
[10]
J. Mu, F. Gao, G. Cui, S. Wang, S. Tang, Z. Li, A comprehensive review of anticorrosive graphene-composite coatings. Prog. Org. Coat. 157 (2021) 106321.
DOI: 10.1016/j.porgcoat.2021.106321
Google Scholar
[11]
D. Wu, Q. Su, L. Chen, H. Cui, Z. Zhao, Y. Wu, H. Zhou, J. Chen, Achieving high anti-wear and corrosion protection performance of phenoxy-resin coatings based on reinforcing with functional graphene oxide, Appl. Surf. Sci. 601 (2022) 154156.
DOI: 10.1016/j.apsusc.2022.154156
Google Scholar
[12]
S. Qi, X. Li, H. Dong, Reduced friction and wear of electro-brush plated nickel composite coatings reinforced by graphene oxide, Wear. 426 (2019) 228-238.
DOI: 10.1016/j.wear.2018.12.069
Google Scholar
[13]
Z. Zhang, Y. Du, C. Zhu, L. Guo, Y. Lu, J. Yu, I.P. Parkin, J. Zhao, D. Guo, Unprecedented enhancement of wear resistance for epoxy-resin graphene composites, Nanoscale. 13 (2021) 2855- 2867.
DOI: 10.1039/d0nr08600b
Google Scholar
[14]
A. Fattah-alhosseini, R. Chaharmahali, Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: A review, FlatChem. 27 (2021) 100241.
DOI: 10.1016/j.flatc.2021.100241
Google Scholar
[15]
D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Graphene–nickel composites, Appl. Surf. Sci. 273 (2013) 484-490.
Google Scholar
[16]
B. Szeptycka, A. Gajewska-Midzialek, T. Babul, Electrodeposition and corrosion resistance of Ni-graphene composite coatings, J. Mater. Eng. Perform. 25 (2016) 3134-3138.
DOI: 10.1007/s11665-016-2009-4
Google Scholar
[17]
C.P. Kumar, T.V. Venkatesha, R. Shabadi, Preparation and corrosion behavior of Ni and Ni–graphene composite coatings, Mater. Res. Bull. 48 (2013) 1477- 1483.
DOI: 10.1016/j.materresbull.2012.12.064
Google Scholar
[18]
X. Zhang, Y. Zhou, A. Liang, B. Zhang, J. Zhang, Facile fabrication and corrosion behavior of iron and iron-reduced graphene oxide composite coatings by electroless plating from baths containing no reducing agent, Surf. Coat. Technol. 304 (2016) 519- 524.
DOI: 10.1016/j.surfcoat.2016.07.071
Google Scholar
[19]
Y.J. Mai, M.P. Zhou, H.J. Ling, F.X. Chen, W.Q. Lian, X.H. Jie, Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance, Appl. Surf. Sci. 433 (2018) 232-239.
DOI: 10.1016/j.apsusc.2017.10.014
Google Scholar
[20]
A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, G. Muhyodin, Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance, RSC Adv. 7 (2017) 31100-31109.
DOI: 10.1039/c6ra28755g
Google Scholar
[21]
M. Tabish, M.U. Malik, M.A. Khan, G. Yasin, H.M. Asif, M.J. Anjum, W.Q. Khan, S. Ibraheem, T.A. Nguyen, Y. Slimani, M.T. Nazir, Construction of NiCo/graphene nanocomposite coating with bulges-like morphology for enhanced mechanical properties and corrosion resistance performance, J. Alloys Compd. 867 (2021) 159138.
DOI: 10.1016/j.jallcom.2021.159138
Google Scholar
[22]
H. Akbulut, G. Hatipoglu, H. Algul, M. Tokur, M. Kartal, M. Uysal, T. Cetinkaya, Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition, Surf. Coat. Technol. 284 (2015) 344-352.
DOI: 10.1016/j.surfcoat.2015.07.080
Google Scholar
[23]
H. Zhang, N. Zhang, F. Fang, Synergistic effect of surfactant and saccharin on dispersion and crystal refinement for electrodeposition of nanocrystalline nickel/graphene oxide composite, Surf. Coat. Technol. 402 (2020) 126292.
DOI: 10.1016/j.surfcoat.2020.126292
Google Scholar
[24]
R. Berlia, M.P. Kumar, C. Srivastava, Electrochemical behavior of Sn-graphene composite coating, RSC Adv. 5 (2015) 71413-71418.
DOI: 10.1039/c5ra11207a
Google Scholar
[25]
M.P. Kumar, M.P. Singh, C. Srivastava, Electrochemical behavior of Zn-graphene composite coatings, RSC Adv. 5 (2015) 25603-25608.
DOI: 10.1039/c5ra02898a
Google Scholar
[26]
M. Rekha, A. Kamboj, C. Srivastava, Electrochemical behaviour of SnZn-graphene oxide composite coatings, Thin Solid Films. 636 (2017) 593-601.
DOI: 10.1016/j.tsf.2017.07.004
Google Scholar
[27]
N.F. Norapandi, N. Salim, K.F. Chong, N.H.A. Bakar, Structural evaluation of graphene oxide/Zinc oxide nanocomposite for corrosion mitigation, Mater. Today: Proc. (2022).
DOI: 10.1016/j.matpr.2022.10.018
Google Scholar
[28]
Q. Zhu, K. Zhang, Y. Huang, R. Liu, Y. Pan, H. Zhang, P. Wang, S. Zhang, D. Pan, Z. Guo, Hydrothermally synthesized ZnO-reduced graphene oxide nanocomposite for enhanced anticorrosion performance of waterborne epoxy coating, J. Nanostruct. Chem. 12 (2022) 277–289.
DOI: 10.1007/s40097-022-00470-9
Google Scholar
[29]
M. Zhang, X. Shi, Z. Li, H. Xu, Enhanced corrosion and wear resistance of gradient graphene-CrC nanocomposite coating on stainless steel, Carbon. 174 (2021) 693-709.
DOI: 10.1016/j.carbon.2020.12.007
Google Scholar
[30]
W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, Inhibited corrosion-promotion activity of graphene encapsulated in nanosized silicon oxide, J. Mater. Chem. A. 3 (2015) 16843-16848.
DOI: 10.1039/c5ta04236d
Google Scholar
[31]
J. Zhang, X. Zhang, Y. Zheng, Synthesis of poly (p-phenylenediamine) encapsulated graphene and its application in steel protection, Prog. Org. Coat. 158 (2021) 106330.
DOI: 10.1016/j.porgcoat.2021.106330
Google Scholar
[32]
S.S.A. Kumar, S. Bashir, K. Ramesh, S. Ramesh, New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings, Prog. Org. Coat. 154 (2021) 106215.
DOI: 10.1016/j.porgcoat.2021.106215
Google Scholar
[33]
M. Rajabi, G.R. Rashed, D. Zaarei, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel, Corros. Eng. Sci. Technol. 50 (2015) 509-516.
DOI: 10.1179/1743278214y.0000000232
Google Scholar
[34]
B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, M.M. Moghadam, Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide, Corros. Sci. 103 (2016) 283- 304.
DOI: 10.1016/j.corsci.2015.11.033
Google Scholar
[35]
F. Zhao, L. Zhang, G. Li, Y. Guo, H. Qi, G. Zhang, Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide, Carbon. 136 (2018) 309-319.
DOI: 10.1016/j.carbon.2018.05.002
Google Scholar
[36]
C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang, Q. Xue, Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene, Carbon. 114 (2017) 356-366.
DOI: 10.1016/j.carbon.2016.12.044
Google Scholar
[37]
H. Yuan, F. Qi, N. Zhao, P. Wan, B. Zhang, H. Xiong, B. Liao, X. Ouyang, Graphene oxide decorated with titanium nanoparticles to reinforce the anti-corrosion performance of epoxy coating, Coatings. 10 (2020) 129.
DOI: 10.3390/coatings10020129
Google Scholar
[38]
Y. Chen, D. Li, W. Yang, C. Xiao, Enhancement of mechanical, thermal and tribological properties of AAPS-modified graphene oxide/polyamide 6 nanocomposites, Compos. B. Eng. 138 (2018) 55-65.
DOI: 10.1016/j.compositesb.2017.09.058
Google Scholar
[39]
J. Wang, S. Zhou, J. Huang, G. Zhao, Y. Liu, Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties, RSC Adv. 8 (2018) 12222-12231.
DOI: 10.1039/c8ra00106e
Google Scholar
[40]
L. Sun, M. Cao, F. Xiao, J. Xu, Y. Chen, POSS functionalized graphene oxide nanosheets with multiple reaction sites improve the friction and wear properties of polyamide 6, Tribol. Int. 154 (2021) 106747.
DOI: 10.1016/j.triboint.2020.106747
Google Scholar