Improvement on Corrosion and Wear Resistance of Graphene-Based Coatings: A Review

Article Preview

Abstract:

Poor corrosion and wear resistance of metallic materials lead to deterioration of their properties and may cause failures. In fundamental, corrosion is due to the reaction of metals with their surroundings, such as moisture, salts, and air pollutants. On the other hand, wear is a surface failure because of continuous dynamic contact between the metals' surfaces and other surfaces. In this regard, surface protection such as coatings is crucial to ensure the long life of the metallic materials. Among the surface protection available, graphene-based coatings have emerged as the most researched topic due to their excellent impermeability, chemical inertness, high hardness, and flexibility. It is reported that graphene-metal and graphene-polymer nanocomposite coatings offer versatile protection against corrosion and abrasive wear. Therefore, this review presents the current state-of-the-art graphene-based nanocomposite coatings in the field of corrosion and abrasive wear resistance. This review provides significant approach of graphene-metal and graphene-polymer, as well as the future perspectives of graphene-based coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 355)

Pages:

3-10

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wang, X. Zha, F. Chen, J. Wang, Y. Li, F. Jiang, Mechanical impact test methods for hard coatings of cutting tools: a review, Int. J. of Adv. Manuf. Technol. 115 (2021) 1367-1385.

DOI: 10.1007/s00170-021-07219-8

Google Scholar

[2] I. Saravanan, A. Devaraju, Wear mechanism of UHMWPE polymer composites for bio medical applications, Mater. Res. Express. 6 (2019) 105355.

DOI: 10.1088/2053-1591/ab3ed9

Google Scholar

[3] Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, L. Wang, One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields, Corros. Sci. 147 (2019) 9-21.

DOI: 10.1016/j.corsci.2018.10.034

Google Scholar

[4] R.K. Singh Raman, A. Tiwari, Graphene: The thinnest known coating for corrosion protection, JOM. 66 (2014) 637-642.

DOI: 10.1007/s11837-014-0921-3

Google Scholar

[5] D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: corrosion-inhibiting coating, ACS nano. 6 (2012) 1102-1108.

DOI: 10.1021/nn203507y

Google Scholar

[6] G. Bierwagen, Corrosion and its control by coatings, in ACS Symposium Series; American Chemical Society, Washington, DC (1998) 1-8.

Google Scholar

[7] L. Mishnaevsky, S. Fæster, L.P. Mikkelsen, Y. Kusano, J.I. Bech, Micromechanisms of leading edge erosion of wind turbine blades: X‐ray tomography analysis and computational studies, Wind. Energy. 23 (2020) 547-562.

DOI: 10.1002/we.2441

Google Scholar

[8] M. Reguzzoni, A. Fasolino, E. Molinari, M.C. Righi, Friction by shear deformations in multilayer graphene. J. Phys. Chem. C. 116 (2012) 21104- 21108.

DOI: 10.1021/jp306929g

Google Scholar

[9] A. Klemenz, L. Pastewka, S.G. Balakrishna, A. Caron, R. Bennewitz, M. Moseler, Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano let. 14 (2014) 7145-7152.

DOI: 10.1021/nl5037403

Google Scholar

[10] J. Mu, F. Gao, G. Cui, S. Wang, S. Tang, Z. Li, A comprehensive review of anticorrosive graphene-composite coatings. Prog. Org. Coat. 157 (2021) 106321.

DOI: 10.1016/j.porgcoat.2021.106321

Google Scholar

[11] D. Wu, Q. Su, L. Chen, H. Cui, Z. Zhao, Y. Wu, H. Zhou, J. Chen, Achieving high anti-wear and corrosion protection performance of phenoxy-resin coatings based on reinforcing with functional graphene oxide, Appl. Surf. Sci. 601 (2022) 154156.

DOI: 10.1016/j.apsusc.2022.154156

Google Scholar

[12] S. Qi, X. Li, H. Dong, Reduced friction and wear of electro-brush plated nickel composite coatings reinforced by graphene oxide, Wear. 426 (2019) 228-238.

DOI: 10.1016/j.wear.2018.12.069

Google Scholar

[13] Z. Zhang, Y. Du, C. Zhu, L. Guo, Y. Lu, J. Yu, I.P. Parkin, J. Zhao, D. Guo, Unprecedented enhancement of wear resistance for epoxy-resin graphene composites, Nanoscale. 13 (2021) 2855- 2867.

DOI: 10.1039/d0nr08600b

Google Scholar

[14] A. Fattah-alhosseini, R. Chaharmahali, Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: A review, FlatChem. 27 (2021) 100241.

DOI: 10.1016/j.flatc.2021.100241

Google Scholar

[15] D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Graphene–nickel composites, Appl. Surf. Sci. 273 (2013) 484-490.

Google Scholar

[16] B. Szeptycka, A. Gajewska-Midzialek, T. Babul, Electrodeposition and corrosion resistance of Ni-graphene composite coatings, J. Mater. Eng. Perform. 25 (2016) 3134-3138.

DOI: 10.1007/s11665-016-2009-4

Google Scholar

[17] C.P. Kumar, T.V. Venkatesha, R. Shabadi, Preparation and corrosion behavior of Ni and Ni–graphene composite coatings, Mater. Res. Bull. 48 (2013) 1477- 1483.

DOI: 10.1016/j.materresbull.2012.12.064

Google Scholar

[18] X. Zhang, Y. Zhou, A. Liang, B. Zhang, J. Zhang, Facile fabrication and corrosion behavior of iron and iron-reduced graphene oxide composite coatings by electroless plating from baths containing no reducing agent, Surf. Coat. Technol. 304 (2016) 519- 524.

DOI: 10.1016/j.surfcoat.2016.07.071

Google Scholar

[19] Y.J. Mai, M.P. Zhou, H.J. Ling, F.X. Chen, W.Q. Lian, X.H. Jie, Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance, Appl. Surf. Sci. 433 (2018) 232-239.

DOI: 10.1016/j.apsusc.2017.10.014

Google Scholar

[20] A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, G. Muhyodin, Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance, RSC Adv. 7 (2017) 31100-31109.

DOI: 10.1039/c6ra28755g

Google Scholar

[21] M. Tabish, M.U. Malik, M.A. Khan, G. Yasin, H.M. Asif, M.J. Anjum, W.Q. Khan, S. Ibraheem, T.A. Nguyen, Y. Slimani, M.T. Nazir, Construction of NiCo/graphene nanocomposite coating with bulges-like morphology for enhanced mechanical properties and corrosion resistance performance, J. Alloys Compd. 867 (2021) 159138.

DOI: 10.1016/j.jallcom.2021.159138

Google Scholar

[22] H. Akbulut, G. Hatipoglu, H. Algul, M. Tokur, M. Kartal, M. Uysal, T. Cetinkaya, Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition, Surf. Coat. Technol. 284 (2015) 344-352.

DOI: 10.1016/j.surfcoat.2015.07.080

Google Scholar

[23] H. Zhang, N. Zhang, F. Fang, Synergistic effect of surfactant and saccharin on dispersion and crystal refinement for electrodeposition of nanocrystalline nickel/graphene oxide composite, Surf. Coat. Technol. 402 (2020) 126292.

DOI: 10.1016/j.surfcoat.2020.126292

Google Scholar

[24] R. Berlia, M.P. Kumar, C. Srivastava, Electrochemical behavior of Sn-graphene composite coating, RSC Adv. 5 (2015) 71413-71418.

DOI: 10.1039/c5ra11207a

Google Scholar

[25] M.P. Kumar, M.P. Singh, C. Srivastava, Electrochemical behavior of Zn-graphene composite coatings, RSC Adv. 5 (2015) 25603-25608.

DOI: 10.1039/c5ra02898a

Google Scholar

[26] M. Rekha, A. Kamboj, C. Srivastava, Electrochemical behaviour of SnZn-graphene oxide composite coatings, Thin Solid Films. 636 (2017) 593-601.

DOI: 10.1016/j.tsf.2017.07.004

Google Scholar

[27] N.F. Norapandi, N. Salim, K.F. Chong, N.H.A. Bakar, Structural evaluation of graphene oxide/Zinc oxide nanocomposite for corrosion mitigation, Mater. Today: Proc. (2022).

DOI: 10.1016/j.matpr.2022.10.018

Google Scholar

[28] Q. Zhu, K. Zhang, Y. Huang, R. Liu, Y. Pan, H. Zhang, P. Wang, S. Zhang, D. Pan, Z. Guo, Hydrothermally synthesized ZnO-reduced graphene oxide nanocomposite for enhanced anticorrosion performance of waterborne epoxy coating, J. Nanostruct. Chem. 12 (2022) 277–289.

DOI: 10.1007/s40097-022-00470-9

Google Scholar

[29] M. Zhang, X. Shi, Z. Li, H. Xu, Enhanced corrosion and wear resistance of gradient graphene-CrC nanocomposite coating on stainless steel, Carbon. 174 (2021) 693-709.

DOI: 10.1016/j.carbon.2020.12.007

Google Scholar

[30] W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, Inhibited corrosion-promotion activity of graphene encapsulated in nanosized silicon oxide, J. Mater. Chem. A. 3 (2015) 16843-16848.

DOI: 10.1039/c5ta04236d

Google Scholar

[31] J. Zhang, X. Zhang, Y. Zheng, Synthesis of poly (p-phenylenediamine) encapsulated graphene and its application in steel protection, Prog. Org. Coat. 158 (2021) 106330.

DOI: 10.1016/j.porgcoat.2021.106330

Google Scholar

[32] S.S.A. Kumar, S. Bashir, K. Ramesh, S. Ramesh, New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings, Prog. Org. Coat. 154 (2021) 106215.

DOI: 10.1016/j.porgcoat.2021.106215

Google Scholar

[33] M. Rajabi, G.R. Rashed, D. Zaarei, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel, Corros. Eng. Sci. Technol. 50 (2015) 509-516.

DOI: 10.1179/1743278214y.0000000232

Google Scholar

[34] B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, M.M. Moghadam, Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide, Corros. Sci. 103 (2016) 283- 304.

DOI: 10.1016/j.corsci.2015.11.033

Google Scholar

[35] F. Zhao, L. Zhang, G. Li, Y. Guo, H. Qi, G. Zhang, Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide, Carbon. 136 (2018) 309-319.

DOI: 10.1016/j.carbon.2018.05.002

Google Scholar

[36] C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang, Q. Xue, Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene, Carbon. 114 (2017) 356-366.

DOI: 10.1016/j.carbon.2016.12.044

Google Scholar

[37] H. Yuan, F. Qi, N. Zhao, P. Wan, B. Zhang, H. Xiong, B. Liao, X. Ouyang, Graphene oxide decorated with titanium nanoparticles to reinforce the anti-corrosion performance of epoxy coating, Coatings. 10 (2020) 129.

DOI: 10.3390/coatings10020129

Google Scholar

[38] Y. Chen, D. Li, W. Yang, C. Xiao, Enhancement of mechanical, thermal and tribological properties of AAPS-modified graphene oxide/polyamide 6 nanocomposites, Compos. B. Eng. 138 (2018) 55-65.

DOI: 10.1016/j.compositesb.2017.09.058

Google Scholar

[39] J. Wang, S. Zhou, J. Huang, G. Zhao, Y. Liu, Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties, RSC Adv. 8 (2018) 12222-12231.

DOI: 10.1039/c8ra00106e

Google Scholar

[40] L. Sun, M. Cao, F. Xiao, J. Xu, Y. Chen, POSS functionalized graphene oxide nanosheets with multiple reaction sites improve the friction and wear properties of polyamide 6, Tribol. Int. 154 (2021) 106747.

DOI: 10.1016/j.triboint.2020.106747

Google Scholar