Rheological and Thermal Characterization of Glycerol Monostearate (GMS) as Compatibilizer on Polyethylene-Palm Stearin Composite

Article Preview

Abstract:

Addition of high percentage of palm stearin (PS) into a blend with high density polyethylene (HDPE) may result in the blend instability and poor flowability of the composite during injection moulding process. The undesirable effect of the PS addition arises from lack of interaction between the PS and HDPE matrix. To improve the interaction between the two components, a compatibilizer was added to the blend. The objective of this work is to study the effect of glycerol monostearate (GMS) compatibilizer concentration (1-5 wt%) on the HDPE-PS composite with PS content of 40 wt.%. The thermal properties of the HDPE-PS composite were characterized using torque analysis, differential scanning calorimetry (DSC) analysis and rheology analysis. It was found that melting temperature of the HDPE-PS composite decreases with GMS concentration. The presence of GMS in the HDPE-PS composite had improved composite flowability indicate suitability of the GMS as compatibilizer for the HDPE-PS composite.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 356)

Pages:

41-47

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Ghazali, I., Julmohammad, N., Huda, N., & Ilyas, R. A. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review. In Polymers (Vol. 13, Issue 9, p.5–20). MDPI AG.

DOI: 10.3390/polym13091396

Google Scholar

[2] Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., & Asrofi, M. (2021). Polylactic acid (Pla) biocomposite: Processing, additive manufacturing and advanced applications. In Polymers (Vol. 13, Issue 8). MDPI AG.

DOI: 10.3390/polym13081326

Google Scholar

[3] Kamarudin, S. H., Jusoh, E. R., Abdullah, L. C., Ismail, M. H. S., Aung, M. M., & Ratnam, C. T. (2019). Thermal and Dynamics Mechanical Analysis of Polypropylene Blown Films with Crude Palm Oil as Plasticizer. Indonesian Journal of Chemistry, 19(3), 545.

DOI: 10.22146/ijc.30460

Google Scholar

[4] Laftah, W. A., Rohah, ·, & Majid, A. (2019). Development of bio-composite film based on high density polyethylene and oil palm mesocarp fibre.

DOI: 10.1007/s42452-019-1402-7

Google Scholar

[5] Ratnam, C. T., Min, A. M., Chuah, T. G., Suraya, A. R., Choong, T. S. Y., & Hasamuddin, W. H. W. (2006). Physical Properties of Polyethylene Modified with Crude Palm Oil. Polymer-Plastics Technology and Engineering, 45(8), 917–922.

DOI: 10.1080/03602550600723563

Google Scholar

[6] Kassim Shaari, N. Z., Bairik, M., & Jai, J. (2020). Effect of different loading low density polyethylene (LDPE) on the thermal and mechanical properties of Tapioca starch-based plastic composite. Malaysian Journal of Chemical Engineering and Technology (MJCET), 3(1), 25.

DOI: 10.24191/mjcet.v3i1.10928

Google Scholar

[7] Ang, D. T.-C., Khong, Y. K., & Gan, S. N. (2016). Palm oil-based compound as environmentally friendly plasticizer for poly(vinyl chloride). Journal of Vinyl and Additive Technology, 22(1), 80–87.

DOI: 10.1002/vnl.21434

Google Scholar

[8] Wu, X. S. (2011). Effect of Glycerin and Starch Crosslinking on Molecular Compatibility of Biodegradable Poly(lactic acid)-Starch Composites. Journal of Polymers and the Environment, 19(4), 912–917.

DOI: 10.1007/s10924-011-0298-0

Google Scholar

[9] Wang, S. H., & Yang, S. M. (2011). Preparation and Characterization of PP-g -GMS -St For PP/O-MMT Composite Materials. Advanced Materials Research, 239–242, 1143–1148.

DOI: 10.4028/www.scientific.net/amr.239-242.1143

Google Scholar

[10] Adriana, Jalal, R., & Yuniati. (2018). Antistatic effect of glycerol monostearate on volume resistivity and mechanical properties of nanocomposite polystyrene-nanocrystal cellulose.

DOI: 10.1063/1.5042967

Google Scholar

[11] Kaur, L., Singh, J., & Singh, N. (2005). Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19(5), 839–849.

DOI: 10.1016/j.foodhyd.2004.10.036

Google Scholar

[12] Liu, L., Li, L., Wan, L., Mao, L., Li, B., & Zhang, X. (2021). Addition of glyceryl monostearate affects the crystallization behavior and polymorphism of palm stearin. Bioprocess and Biosystems Engineering, 44(5), 941–949.

DOI: 10.1007/s00449-019-02251-1

Google Scholar

[13] Nazri Ahmad, M., Ridzwan Ishak, M., Mohammad Taha, M., Mustapha, F., Leman, Z., Bhudolia, K., & Chandrakant Joshi, S. (2021). Rheological and Morphological Properties of Oil Palm Fiber-Reinforced Thermoplastic Composites for Fused Deposition Modeling (FDM).

DOI: 10.3390/polym13213739

Google Scholar

[14] Sudari, A., Shamsuri, A., Zainudin, E., & Tahir, P. (2017). Exploration on compatibilizing effect of nonionic, anionic, and cationic surfactants on mechanical, morphological, and chemical properties of high-density polyethylene/low-density polyethylene/cellulose biocomposites. Journal of Thermoplastic Composite Materials, 30(6), 855–884.

DOI: 10.1177/0892705715614064

Google Scholar

[15] Liu, Z. Q., Yi, X. S., & Feng, Y. (2001). Effects of glycerin and glycerol monostearate on performance of thermoplastic starch. Journal of Materials Science, 36(7), 1809–1815.

Google Scholar

[16] Alamri, H. R., El-Hadi, A. M., Al-Qahtani, S. M., Assaedi, H. S., & Alotaibi, A. S. (2020). Role of lubricant with a plasticizer to change the glass transition temperature as a result improving the mechanical properties of poly(lactic acid) PLLA. Materials Research Express, 7(2).

DOI: 10.1088/2053-1591/ab715a

Google Scholar

[17] Ferro, A. C., Okuro, P. K., Badan, A. P., & Cunha, R. L. (2019). Role of the oil on glyceryl monostearate based oleogels. Food Research International, 120, 610–619

DOI: 10.1016/j.foodres.2018.11.013

Google Scholar