Effect of Heat Treatment on Formability of AZ61 Magnesium Alloys

Article Preview

Abstract:

The current paper focuses on enhancing the manufacturability of AZ61 magnesium alloys by heat treatment. Specimens are subjected to solution heat treatment. First, all samples underwent a 15-hour treatment at 415°C before aging at 50°C, 100oC, and 150°C. The specimens were furnace cooled and quenched after achieving the precise aging temperature. The results have been extracted from tensile and cupping tests. The outcomes of each test have been compared with the data taken without heat treatment, so the ductility increase can be observed. Tests revealed better results for furnace-cooled specimens. The increase in formability of about 9% along with a decrease in strength of only 11% is observed for 150°C aging temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 356)

Pages:

15-20

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Hashi: J. Appl. Mech. Trans. ASME, 50(3), (1983) p.481–505.

Google Scholar

[2] Klocke, Fritz, Sein Leung Soo, Bernhard Karpuschewski, John A. Webster, Donka Novovic, Amr Elfizy, Dragos A. Axinte, and Stefan Tönissen: CIRP Annals 64(2), (2015): 581-604.

DOI: 10.1016/j.cirp.2015.05.004

Google Scholar

[3] J. E. Gray and B. Luan: J. Alloys Compd., vol. 336, (2002), p.88–113.

Google Scholar

[4] Figueiredo, R. B., and Langdon, T. G.: Journal of materials science, 44(17), (2009), pp.4758-4762.

Google Scholar

[5] Buha, J.: Journal of Materials Science, 43(4), (2008), pp.1220-1227.

Google Scholar

[6] Yang, M., Pan, F., Cheng, R., and Tang, A.: Journal of Materials Science, 42(24), (2007), pp.10074-10079.

Google Scholar

[7] Li, F., Wang, Y., Chen, L., Liu, Z., and Zhou, J.: 40(6), (2005), pp.1529-1531.

Google Scholar

[8] Fan, J. F., Yang, G. C., Chen, S. L., Xie, H., Wang, M., and Zhou, Y. H.: Journal of materials science, 39(20), (2004), pp.6375-6377.

Google Scholar

[9] S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier: Nutrients, vol. 5, (2013), p.3022–3033.

Google Scholar

[10] S. Graff, W. Brocks, and D. Steglich: Int. J. Plast., 23(12), (2007), p.1957–1978, 2007.

Google Scholar

[11] A. N. Chamos, S. G. Pantelakis, G. N. Haidemenopoulos, and E. Kamoutsi: Fatigue Fract. Eng. Mater. Struct., 31(9), (2008), p.812–821.

DOI: 10.1111/j.1460-2695.2008.01267.x

Google Scholar

[12] DIN 50125: 2016‐12: Testing of metallic materials‐Tensile test pieces, (2016).

Google Scholar

[13] A. Adawi, M. A. Youssef, and M. E. Meshaly: Eng. Struct., vol. 91, (2015), p.1–15.

Google Scholar

[14] Lv, F., F. Yang, Q. Q. Duan, Y. S. Yang, S. D. Wu, S. X. Li, and Z. F. Zhang: International Journal of Fatigue 33(5), (2011), pp.672-682..

Google Scholar

[15] Laboratory, The Taylor-Hobson: Journal of Scientific Instruments 4(2), (1926), pp: 55-55.

Google Scholar

[16] P. D. Bilmes, C. L. Llorente, C. M. Méndez, and C. A. Gervasi: Corros. Sci., 51(4), (2009), p.876–881.

Google Scholar

[17] C. K. Wu and M. M. Makhlouf: Light Metals 2011, (2011), p.431–840.

Google Scholar

[18] G. Krauss: Reference Module in Materials Science and Materials Engineering, (2016).

Google Scholar

[19] S. Z. Bokshteyn: Met. Sci. Heat Treat. Met., vol. 3(11–12), (1961), p.473–480.

DOI: 10.1007/bf00814533

Google Scholar

[20] A. S. Guimarães and J. C. P. Filho: Scanning, 26(1), (2004), p.62–66.

Google Scholar