Effect of Adding Minor Cu Amounts on Stability of Constituent Phases in AlxCrFeMnNi High Entropy Alloy Microstructure

Article Preview

Abstract:

A family of AlxCuyCrFeMnNi (x=0, 0.15, 0.3, 0.6, 0.9 and y=0, 0.07, 0.14) high entropy alloys (HEA) were arc cast and then heat treated for 24h at 1100֯C-1150֯C followed by water quench. The microstructure of low Al alloys (Al0Cux and Al0.15Cux) consisted of FCC and BCC phases. Al0.3Cux showed an additional ordered precipitate phase. High Al alloys (Al0.6Cux and Al0.9Cux) consisted of two BCC phases rich in Cr-Fe and Ni-Al. In the present study, the phases formed in the microstructures were evaluated in light of valence electron concentration (VEC), Hume-Rothery (H-R) and degree of partitioning. Although VEC successfully predicts the impact of Al and Cu on the trend of FCC-BCC phase formation, the parameter does not accurately predict the structure of high Al alloys. A good agreement was observed between H-R rules prediction and the experiments which might be ascribed to the high temperature equilibrium phases developed by the heat treatment. As per these criteria, increasing Cu (up to 3at.%) and decreasing Al promote formation of solid solution phases. Adding minor amounts of Cu avoids the Cu partitioning that besets high Cu HEAs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 357)

Pages:

19-25

Citation:

Online since:

June 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miracle, D.B. and O.N. Senkov, 2017, Acta Materialia. 122: pp.448-511.

Google Scholar

[2] Hyun, J.I., K.H. Kong, K.C. Kim, W.T. Kim, and D.H. Kim, 2015, Applied Microscopy. 45(1): pp.9-15.

Google Scholar

[3] Rao, Z., X. Wang, Q. Wang, T. Liu, X. Chen, L. Wang, and X. Hui, 2017, Advanced Engineering Materials. 19(5): p.1600726.

Google Scholar

[4] Hume-Rothery, W., 1952.

Google Scholar

[5] Hume-Rothery, W. and H.M. Powell, 1935, Zeitschrift für Kristallographie-Crystalline Materials. 91(1-6): pp.23-47.

DOI: 10.1524/zkri.1935.91.1.23

Google Scholar

[6] Hume-Rothery, W., 1969, Indian Journal of Physics. 11: pp.74-74.

Google Scholar

[7] Wu, P.H., N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, and X.J. Wang, 2015, Materials Science and Engineering: A. 642: pp.142-149.

Google Scholar

[8] Ye, Y.F., Q. Wang, J. Lu, C.T. Liu, and Y. Yang, 2016, Materials Today. 19(6): pp.349-362.

Google Scholar

[9] Wang, W.L., L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, and B. Wei, 2016, Intermetallics. 77: pp.41-45.

Google Scholar

[10] Li, C., Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, 2016, Materials & Design. 90: pp.601-609.

Google Scholar

[11] Xian, X., L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu, 2018, Materials Science and Engineering: A. 713: pp.134-140.

Google Scholar

[12] Ren, B., Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, 2010, Journal of Alloys and Compounds. 493(1): pp.148-153.

Google Scholar

[13] Ren, B., Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, 2012, Materials and Corrosion. 63(9): pp.828-834.

Google Scholar

[14] Navazani, M., S.R. Kada, D. Fabijanic, and M. Barnett, 2024, Intermetallics. 164: p.108100.

DOI: 10.1016/j.intermet.2023.108100

Google Scholar

[15] Takeuchi, A. and A. Inoue, 2005, MATERIALS TRANSACTIONS. 46(12): pp.2817-2829.

Google Scholar

[16] Chen, H.-Y., C.-W. Tsai, C.-C. Tung, J.-W. Yeh, T.-T. Shun, C.-C. Yang, and P.-H. Lee, 2006, European Journal of Control - EUR J CONTROL. 31: pp.685-698.

Google Scholar

[17] Zhang, L.J., K. Guo, H. Tang, M.D. Zhang, J.T. Fan, P. Cui, Y.M. Ma, P.F. Yu, and G. Li, 2019, Materials Science and Engineering: A. 757: pp.160-171.

Google Scholar

[18] Börnsen, N., G. Bester, B. Meyer, and M. Fähnle, 2000, Journal of Alloys and Compounds. 308(1): pp.1-14.

Google Scholar