Roundness Errors Prevention of the Machined Surface in WEDM

Article Preview

Abstract:

Progressive electrical discharge machining technology is characterized by a high degree of quality of the machined surface. The high achieved quality of the machined surface not only in terms of roughness parameters but also in terms of geometric shape is practically a matter of course with this machining technology. Nevertheless, in certain specific cases, geometric deviations of the shape occur, even when the most modern and highly sophisticated electrical discharge equipment are used. One of the frequently occurring geometric inaccuracies of the shape when applying progressive electrical discharge machining technology with a wire tool electrode is the deviation of circularity. Therefore, the aim of the conducted experimental research was to identify these shortcomings in the first place and also to describe in which specific cases these deviations occur. Subsequently, based on the obtained results of experimental measurements, propose appropriate measures for their elimination or at least their minimization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 363)

Pages:

3-11

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.M. Abhilash, D. Chakradhar, Effect of wire material and discharge energy on productivity and surface integrity of WEDM-processed Inconel 718, Advances in materials and processing technologies 8:4 (2022).

DOI: 10.1080/2374068x.2022.2079590

Google Scholar

[2] K. Mouralova, L. Benes, T. Prokes, R. Zahradnicek, J. Fries, T. Plichta, Analysis of the machinability of different types of sintered carbides with WEDM in both water and oil baths, Int. J. Adv. Manuf. Technol. 125 (2023) 2705-2715.

DOI: 10.1007/s00170-023-10913-4

Google Scholar

[3] D. Oniszczuk-Świercz, R. Świercz, Š. Michna, Evaluation of prediction models of the microwire edm process of Inconel 718 using ANN and RSM methods, Materials 15 (2022) 8317.

DOI: 10.3390/ma15238317

Google Scholar

[4] O. Dodun, L. Slătineanu, G. Nagîț, A. Hrițuc, A.M. Mihalache, I. Beșliu-Băncescu, WEDM-generated slot width variation modeling, Micromachines 13 (2022) 1231.

DOI: 10.3390/mi13081231

Google Scholar

[5] Fassi, F. Modica, Editorial for the special issue on micro-electro discharge machining: principles, Recent advancements and applications, volume II., Micromachines 14 (2023) 29.

DOI: 10.3390/mi14010029

Google Scholar

[6] Ľ. Straka, M. Gombár, A. Vagaská, P. Kuchta, Efficiency Optimization of the Electroerosive Process in μ-WEDM of Steel MS1 Sintered Using DMLS Technology, Micromachines 13 (2022) 1446.

DOI: 10.3390/mi13091446

Google Scholar

[7] H.H. Gorgani, A. Jahazi, A.J. Pak, S. Shabani, A hybrid algorithm for adjusting the input parameters of the wirecut EDM machine in order to obtain maximum customer satisfaction, SN Appl. Sci. 5 (2023) 37.

DOI: 10.1007/s42452-022-05256-w

Google Scholar

[8] K. Mouralova, J. Bednar, L. Benes, et al., Machining of 1.2363 and 1.2343ESR steels using EDM, J Braz. Soc. Mech. Sci. Eng. 45 (2023) 381.

DOI: 10.1007/s40430-023-04293-9

Google Scholar

[9] S.N. Grigoriev, M.P. Kozochkin, V.D. Gurin, A.P. Malakhinsky, A.N. Porvatov, Y.A. Melnik, Display of WEDM quality indicators of heat-resistant alloy processing in acoustic emission parameters, Sensors 23:19 (2023) 8288.

DOI: 10.3390/s23198288

Google Scholar

[10] S. Kosaraju, P. Babu Bobba, S.R. Salkuti, Optimization and microstructural studies on the machining of Inconel 600 in WEDM using untreated and cryogenically treated zinc electrodes, Materials 16 (2023) 3181.

DOI: 10.3390/ma16083181

Google Scholar

[11] L. Straka, G. Dittrich, Influence of tool steel properties on surface quality after electrical discharge machining by wire electrode, International journal of advanced manufacturing technology 106:5-6 (2020) 1617-1632.

DOI: 10.1007/s00170-019-04708-9

Google Scholar

[12] A. Khosravi, M. Rajabzadeh, V. Zaloga, I. Dyadyura, Customer knowledge management in enterprise software development companies: Organizational, Human and Technological Perspective" Management systems in production engineering, 30:4 (2022) 291-297.

DOI: 10.2478/mspe-2022-0037

Google Scholar

[13] A. Kopytowski, R. Świercz, D. Oniszczuk-Świercz, J. Zawora, J. Kuczak, Ł. Żrodowski, Effects of a New Type of Grinding Wheel with Multi-Granular Abrasive Grains on Surface Topography Properties after Grinding of Inconel 625, Materials 16 (2023) 716.

DOI: 10.3390/ma16020716

Google Scholar

[14] W. Ming, X. Guo, G. Zhang, S. Hu, Z. Liu, Z. Xie, S. Zhang, L. Duan, Optimization of process parameters and performance for machining Inconel 718 in renewable dielectrics, Alexandria Engineering Journal 79 (2023) 164-179.

DOI: 10.1016/j.aej.2023.07.075

Google Scholar

[15] K. Mouralova, J. Bednar, L. Benes, T. Prokes, R. Zahradnicek, J. Fries, Mathematical models for machining optimization of Ampcoloy 35 with different thicknesses using WEDM to improve the surface properties of mold parts, Materials 16 (2023) 100.

DOI: 10.3390/ma16010100

Google Scholar

[16] V. Nahornyi, D. Cataldi, V. Straser, New effective disaster forecasting methodology, MM Science Journal, 10 (2023) 6662-6667.

Google Scholar

[17] R. Nowicki, R. Świercz, D. Oniszczuk-Świercz, M. Rozenek, Experimental investigation of technological indicators and surface roughness of hastelloy C-22 after electrical discharge machining using POCO graphite electrodes, Materials 15 (2022) 5631.

DOI: 10.3390/ma15165631

Google Scholar

[18] D. Oniszczuk-Świercz, R. Świercz, A. Kopytowski, R. Nowicki, Experimental investigation and optimization of rough EDM of high-thermal-conductivity tool steel with a thin-walled electrode, Materials 16 (2023) 302.

DOI: 10.3390/ma16010302

Google Scholar

[19] A. Panda, V. Chernobrovchenko, K. Dyadyura, L. Sukhodub, M. Kumeda, M. Behun, Selection of materials hydroxylapatite using the method of analysis of hierarchy, MM Science Journal, 6 (2023) 6472-6477.

Google Scholar

[20] M. Rafaqat, N.A. Mufti, N. Ahmed, A.U. Rehman, A.Y. AlFaify, M.U. Farooq, M. Saleh, Hole-making in D2-Grade steel tool by electric-discharge machining through non-conventional electrodes, Processes 10 (2022) 1553.

DOI: 10.3390/pr10081553

Google Scholar

[21] M. Rimar, J. Kizek, A. Varga, M. Fedak, G. Jablonský, The influence of hydrogen concentration in natural gas on heat flows in a thermal aggregate, MM Science Journal, 12 (2022) 6162-6168.

Google Scholar

[22] D. Rodic, M. Gostimirovic, M. Sekulic, B. Savkovic, A. Aleksic, Study and optimization defect layer in powder mixed electrical discharge machining of titanium alloy, Processes, 11:4 (2023) 1289.

DOI: 10.3390/pr11041289

Google Scholar

[23] J. B. Saedon, N. Jaafar, R. Jaafar, N.H. Saad, M.S. Kasim, Modeling and multi-response optimization on WEDM Ti6Al4V, Applied mechanics and materials 510 (2014) 123-129.

DOI: 10.4028/www.scientific.net/amm.510.123

Google Scholar

[24] L. Selvarajan, K. Venkataramanan, Si3N4–TiN conductive ceramic composites: topography on EDMed surfaces and precise drilled holes, Materials science and technology, 39:15 (2023) 2006-2017.

DOI: 10.1080/02670836.2023.2187156

Google Scholar

[25] S. Seshaiah, D. Sampathkumar, M. Mariappan, A. Mohankumar, G. Balachandran, M. Kaliyamoorthy, B. Rajendran, R. Gopal, Advanced Materials for Promoting Sustainability (2022) 6022550

Google Scholar

[26] D.P. Singh, S. Mishra, Effect of different reinforcements in wire electric discharge machining of various geometrical profiles in metal matrix composites, Int. J. Interact. Des. Manuf. (2023).

DOI: 10.1007/s12008-023-01477-4

Google Scholar

[27] L. Straka, J. Pitel, I. Corny, Influence of the main technological parameters and material properties of the workpiece on the geometrical accuracy of the machined surface at WEDM, International journal of advanced manufacturing technology 115:9-10 (2021) 3065-3087.

DOI: 10.1007/s00170-021-07313-x

Google Scholar

[28] V. Singh, A.K. Sharma, A. Goyal, K.K. Saxena, P. Negi, P.Ch.S. Rao, Electric discharge machining performance measures and optimisation: a review, Advances in Materials and Processing Technologies (2023).

DOI: 10.1080/2374068x.2023.2168775

Google Scholar

[29] R. Świercz, D. Oniszczuk-Świercz, J. Zawora, M. Marczak, Investigation of the Influence of Process Parameters on Shape Deviation after Wire Electrical Discharge Machining, Arch. Metall. Mater. 64 (2019) 1457-1462.

DOI: 10.1063/1.5056295

Google Scholar

[30] A.M. Takale, N.K. Chougule, P.H. Selmokar, M.G. Gawari, Multi-response optimization of micro-WEDM process parameters of Ti49.4-Ni50.6 shape memory alloy for orthopedic implant application, Advanced materials research 1150 (2018) 1-21.

DOI: 10.4028/www.scientific.net/amr.1150.1

Google Scholar

[31] T. Yu, J. Zhao, Quantifying the mechanisms of keyhole pore evolutions and the role of metal-vapor condensation in laser powder bed fusion, Additive Manufacturing, 72 (2023) 103642.

DOI: 10.1016/j.addma.2023.103642

Google Scholar

[32] A. Vagaská, M. Gombár, Ľ. Straka, selected mathematical optimization methods for solving problems of engineering practice, Energies 15 (2022) 2205.

DOI: 10.3390/en15062205

Google Scholar

[33] G. Wang, F.A. Han, Comparative study on the surface integrity of single-step and multi-step sequential machining in electric discharge machining, Int. J. Adv. Manuf. Technol. 114 (2021) 1803-1817.

DOI: 10.1007/s00170-021-06947-1

Google Scholar

[34] W. Ming, X. Guo, G. Zhang, S. Hu, Z. Liu, Z. Xie, S. Zhang, L. Duan, Optimization of process parameters and performance for machining Inconel 718 in renewable dielectrics, Alexandria Engineering Journal, 79 (2023) 164-179.

DOI: 10.1016/j.aej.2023.07.075

Google Scholar