[1]
Murty, B., Yeh, J., & Ranganathan, S. High-Entropy alloys. Butterworth-Heinemann. (2014)
Google Scholar
[2]
Ye, Y., Wang, Q., J, L., Liu, C., & Yang, Y. High-entropy alloy: challenges and prospects. Materials Today, 19(6) (2016) 349–362
DOI: 10.1016/j.mattod.2015.11.026
Google Scholar
[3]
Gao, M. C., Yeh, J., Liaw, P. K., & Zhang, Y. High-Entropy alloys: Fundamentals and Applications. Springer. eBooks. (2016)
DOI: 10.1007/978-3-319-27013-5
Google Scholar
[4]
Tisza M.: Az anyagtudomány alapjai, Miskolci Egyetemi Kiadó, Miskolc, ISBN 978-963-661-844-5, pp.1-285. (2013)
Google Scholar
[5]
Miracle, D., & Senkov, O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122 (2017) 448–511
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[6]
Brif, Y., Thomas, M., & Todd, I. The use of high-entropy alloys in additive manufacturing. Scripta Materialia, 99 (2015) 93–96
DOI: 10.1016/j.scriptamat.2014.11.037
Google Scholar
[7]
Katiyar, N. K., Biswas, K., Yeh, J., Sharma, S., & Tiwary, C. S. A perspective on the catalysis using the high entropy alloys. Nano Energy, 88 (2021) 106261
DOI: 10.1016/j.nanoen.2021.106261
Google Scholar
[8]
Nascimento, C. B., Donatus, U., Ríos, C. T., De Oliveira, M. C. L., & Antunes, R. A. A review on Corrosion of High Entropy Alloys: Exploring the Interplay Between Corrosion Properties, Alloy Composition, Passive Film Stability and Materials Selection. Materials Research-ibero-american Journal of Materials, 25. (2022)
DOI: 10.1590/1980-5373-mr-2021-0442
Google Scholar
[9]
Liu, Y., Xiang, D., Wang, K., & Yu, T. Corrosion of Laser Cladding High-Entropy Alloy Coatings: A Review. Coatings, 12(11) (2022) 1669
DOI: 10.3390/coatings12111669
Google Scholar
[10]
Shi, Y., Yang, B., & Liaw, P. K. Corrosion-Resistant High-Entropy Alloys: A review. Metals, 7(2) (2017) 43
DOI: 10.3390/met7020043
Google Scholar
[11]
Gobinath, V. M., & Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Materials Today: Proceedings, 43 (2021) 817–823
DOI: 10.1016/j.matpr.2020.06.495
Google Scholar
[12]
Lee, C., Chang, C., Chen, Y., Yeh, J., & Shih, H. C. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corrosion Science, 50(7) (2008) 2053–2060
DOI: 10.1016/j.corsci.2008.04.011
Google Scholar
[13]
Tsai, M., & Yeh, J. High-Entropy Alloys: A Critical review. Materials Research Letters, 2(3) (2014) 107–123
DOI: 10.1080/21663831.2014.912690
Google Scholar
[14]
Sonal, S., & Lee, J. Recent advances in additive manufacturing of high entropy alloys and their nuclear and Wear-Resistant applications. Metals, 11(12) (2021) 1980
DOI: 10.3390/met11121980
Google Scholar
[15]
Gobinath, V. M., & Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Materials Today: Proceedings, 43 (2021) 817–823
DOI: 10.1016/j.matpr.2020.06.495
Google Scholar
[16]
Shittu, J., Pole, M., Cockerill, I., Sadeghilaridjani, M., Reddy, L. J., Manivasagam, G., Singh, H., Grewal, H. S., Arora, H. S., & Mukherjee, S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Applied Bio Materials, 3(12) (2020) 8890–8900
DOI: 10.1021/acsabm.0c01181
Google Scholar
[17]
Ahmady, A. R., Ekhlasi, A., Nouri, A., Nazarpak, M. H., Gong, P., & Solouk, A. High entropy alloy coatings for biomedical applications: A review. Smart Materials in Manufacturing, 1, (2023) 100009
DOI: 10.1016/j.smmf.2022.100009
Google Scholar
[18]
Dewangan, S. K., Mangish, A., Kumar, S., Sharma, A., Ahn, B., & Kumar, V. A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal, 35 (2022) 101211
DOI: 10.1016/j.jestch.2022.101211
Google Scholar
[19]
Pineau, A., & Antolovich, S. D. High temperature fatigue of nickel-base superalloys – A review with special emphasis on deformation modes and oxidation. Engineering Failure Analysis, 16(8) (2009) 2668–2697
DOI: 10.1016/j.engfailanal.2009.01.010
Google Scholar
[20]
Senkov, O., Wilks, G. B., Miracle, D., Chuang, C., & Liaw, P. K. Refractory high-entropy alloys. Intermetallics, 18(9) (2010) 1758–1765
DOI: 10.1016/j.intermet.2010.05.014
Google Scholar
[21]
P. Jena, "Materials for hydrogen Storage: Past, present, and future," The Journal of Physical Chemistry Letters, vol. 2, no. 3 (2011) p.206–211.
DOI: 10.1021/jz1015372
Google Scholar
[22]
B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: A review☆," International Journal of Hydrogen Energy, vol. 32, no. 9 (2007) p.1121–1140.
DOI: 10.1016/j.ijhydene.2006.11.022
Google Scholar
[23]
Kao, Y.F., Chen, S.K., Sheu, J.H., Lin, J.T., Lin, W.E., Yeh, J.W., Lin, S.J., Liou, T.H. and Wang, C.W. Hydrogen Storage Properties of Multi-Principal-Component CoFeMnTixVyZrz Alloys. International Journal of Hydrogen Energy, 35 (2010) 9046-9059.
DOI: 10.1016/j.ijhydene.2010.06.012
Google Scholar
[24]
I. Kunce, M. Polański, and J. Bystrzycki, "Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)," International Journal of Hydrogen Energy, vol. 39, no. 18 (2014) p.9904–9910.
DOI: 10.1016/j.ijhydene.2014.02.067
Google Scholar
[25]
J. Zhang et al., "Superior hydrogen sorption kinetics of TI0.20ZR0.20HF0.20NB0.40 High-Entropy alloy," Metals, vol. 11, no. 3 (2021) p.470.
DOI: 10.3390/met11030470
Google Scholar
[26]
C. Zlotea, A. Bouzidi, J. Montero, G. Ek, and M. Sahlberg, "Compositional effects on the hydrogen storage properties in a series of refractory high entropy alloys," Frontiers in Energy Research, vol. 10 (2022).
DOI: 10.3389/fenrg.2022.991447
Google Scholar
[27]
F. D. S. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, "Review and outlook on high-entropy alloys for hydrogen storage," Energy and Environmental Science, vol. 14, no. 10 (2021) p.5191–5227.
DOI: 10.1039/d1ee01543e
Google Scholar
[28]
J. C. Moreno Pirajn, Ed., Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech, (2011).
DOI: 10.5772/823
Google Scholar
[29]
Q. Lai et al., "How to design hydrogen storage Materials? Fundamentals, synthesis, and storage tanks," Advanced Sustainable Systems, vol. 3 (2019) 9.
DOI: 10.1002/adsu.201900043
Google Scholar
[30]
R. B. Strozi, D. R. Leiva, J. Huot, W. J. B. Filho, and G. Zepon, "Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys," International Journal of Hydrogen Energy, vol. 46, no. 2 (2021) p.2351–2361.
DOI: 10.1016/j.ijhydene.2020.10.106
Google Scholar
[31]
F. D. S. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, "Review and outlook on high-entropy alloys for hydrogen storage," Energy and Environmental Science, vol. 14, no. 10 (2021) p.5191–5227.
DOI: 10.1039/d1ee01543e
Google Scholar
[32]
C. Zhang, Y. Wu, L. You, X. Cao, X. Liu, and X. Song, "Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy," Journal of Alloys and Compounds, vol. 781 (2019) p.613–620.
DOI: 10.1016/j.jallcom.2018.12.120
Google Scholar
[33]
M. M. Nygård, G. Ek, D. Karlsson, M. H. Sørby, M. Sahlberg, and B. C. Hauback, "Counting electrons - A new approach to tailor the hydrogen sorption properties of high-entropy alloys," Acta Materialia, vol. 175 (2019) p.121–129.
DOI: 10.1016/j.actamat.2019.06.002
Google Scholar
[34]
C. Zhang et al., "Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy," International Journal of Hydrogen Energy, vol. 45, no. 8 (2020) p.5367–5374.
DOI: 10.1016/j.ijhydene.2019.05.214
Google Scholar