Applicability of High-Entropy Alloys

Article Preview

Abstract:

In the 21st century a new chapter in materials science has been opened with the appearance of high-entropy alloys (HEA). These alloys differ from conventional alloys, they contain five or more elements in roughly equal amounts which are often based on a single main element (base metal) to which one or more other elements are added in small amounts to achieve the desired properties. High entropy alloys exhibit simple crystal structures due to high entropy, such as lattices that are body-centered cubic (BCC), face-centered cubic (FCC). In conventional alloys, diffusion inhibition is often achieved by using small amounts of alloying elements to increase the number of lattice defects or by creating secondary phases that block atomic motion. In high-entropy alloys, the large number of different elements results in high entropy, which can lead to slower diffusion due to the disorder of the atomic arrangement. This property can be beneficial in terms of corrosion resistance and suitability for use at high temperatures.. High-entropy alloys possess exceptional mechanical properties, corrosion resistance, and high-temperature behavior, making them promising alternatives to conventional alloys in fields such as aerospace and aviation, where materials must perform under extreme environmental conditions. However, the economic production and processing of HEAs remains a challenge, which limits their widespread application. Additional research and development are required to fully realize the potential of HEAs and to replace conventional alloys on a larger scale.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 363)

Pages:

71-79

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Murty, B., Yeh, J., & Ranganathan, S. High-Entropy alloys. Butterworth-Heinemann. (2014)

Google Scholar

[2] Ye, Y., Wang, Q., J, L., Liu, C., & Yang, Y. High-entropy alloy: challenges and prospects. Materials Today, 19(6) (2016) 349–362

DOI: 10.1016/j.mattod.2015.11.026

Google Scholar

[3] Gao, M. C., Yeh, J., Liaw, P. K., & Zhang, Y. High-Entropy alloys: Fundamentals and Applications. Springer. eBooks. (2016)

DOI: 10.1007/978-3-319-27013-5

Google Scholar

[4] Tisza M.: Az anyagtudomány alapjai, Miskolci Egyetemi Kiadó, Miskolc, ISBN 978-963-661-844-5, pp.1-285. (2013)

Google Scholar

[5] Miracle, D., & Senkov, O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122 (2017) 448–511

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[6] Brif, Y., Thomas, M., & Todd, I. The use of high-entropy alloys in additive manufacturing. Scripta Materialia, 99 (2015) 93–96

DOI: 10.1016/j.scriptamat.2014.11.037

Google Scholar

[7] Katiyar, N. K., Biswas, K., Yeh, J., Sharma, S., & Tiwary, C. S. A perspective on the catalysis using the high entropy alloys. Nano Energy, 88 (2021) 106261

DOI: 10.1016/j.nanoen.2021.106261

Google Scholar

[8] Nascimento, C. B., Donatus, U., Ríos, C. T., De Oliveira, M. C. L., & Antunes, R. A. A review on Corrosion of High Entropy Alloys: Exploring the Interplay Between Corrosion Properties, Alloy Composition, Passive Film Stability and Materials Selection. Materials Research-ibero-american Journal of Materials, 25. (2022)

DOI: 10.1590/1980-5373-mr-2021-0442

Google Scholar

[9] Liu, Y., Xiang, D., Wang, K., & Yu, T. Corrosion of Laser Cladding High-Entropy Alloy Coatings: A Review. Coatings, 12(11) (2022) 1669

DOI: 10.3390/coatings12111669

Google Scholar

[10] Shi, Y., Yang, B., & Liaw, P. K. Corrosion-Resistant High-Entropy Alloys: A review. Metals, 7(2) (2017) 43

DOI: 10.3390/met7020043

Google Scholar

[11] Gobinath, V. M., & Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Materials Today: Proceedings, 43 (2021) 817–823

DOI: 10.1016/j.matpr.2020.06.495

Google Scholar

[12] Lee, C., Chang, C., Chen, Y., Yeh, J., & Shih, H. C. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corrosion Science, 50(7) (2008) 2053–2060

DOI: 10.1016/j.corsci.2008.04.011

Google Scholar

[13] Tsai, M., & Yeh, J. High-Entropy Alloys: A Critical review. Materials Research Letters, 2(3) (2014) 107–123

DOI: 10.1080/21663831.2014.912690

Google Scholar

[14] Sonal, S., & Lee, J. Recent advances in additive manufacturing of high entropy alloys and their nuclear and Wear-Resistant applications. Metals, 11(12) (2021) 1980

DOI: 10.3390/met11121980

Google Scholar

[15] Gobinath, V. M., & Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Materials Today: Proceedings, 43 (2021) 817–823

DOI: 10.1016/j.matpr.2020.06.495

Google Scholar

[16] Shittu, J., Pole, M., Cockerill, I., Sadeghilaridjani, M., Reddy, L. J., Manivasagam, G., Singh, H., Grewal, H. S., Arora, H. S., & Mukherjee, S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Applied Bio Materials, 3(12) (2020) 8890–8900

DOI: 10.1021/acsabm.0c01181

Google Scholar

[17] Ahmady, A. R., Ekhlasi, A., Nouri, A., Nazarpak, M. H., Gong, P., & Solouk, A. High entropy alloy coatings for biomedical applications: A review. Smart Materials in Manufacturing, 1, (2023) 100009

DOI: 10.1016/j.smmf.2022.100009

Google Scholar

[18] Dewangan, S. K., Mangish, A., Kumar, S., Sharma, A., Ahn, B., & Kumar, V. A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal, 35 (2022) 101211

DOI: 10.1016/j.jestch.2022.101211

Google Scholar

[19] Pineau, A., & Antolovich, S. D. High temperature fatigue of nickel-base superalloys – A review with special emphasis on deformation modes and oxidation. Engineering Failure Analysis, 16(8) (2009) 2668–2697

DOI: 10.1016/j.engfailanal.2009.01.010

Google Scholar

[20] Senkov, O., Wilks, G. B., Miracle, D., Chuang, C., & Liaw, P. K. Refractory high-entropy alloys. Intermetallics, 18(9) (2010) 1758–1765

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar

[21] P. Jena, "Materials for hydrogen Storage: Past, present, and future," The Journal of Physical Chemistry Letters, vol. 2, no. 3 (2011) p.206–211.

DOI: 10.1021/jz1015372

Google Scholar

[22] B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: A review☆," International Journal of Hydrogen Energy, vol. 32, no. 9 (2007) p.1121–1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[23] Kao, Y.F., Chen, S.K., Sheu, J.H., Lin, J.T., Lin, W.E., Yeh, J.W., Lin, S.J., Liou, T.H. and Wang, C.W. Hydrogen Storage Properties of Multi-Principal-Component CoFeMnTixVyZrz Alloys. International Journal of Hydrogen Energy, 35 (2010) 9046-9059.

DOI: 10.1016/j.ijhydene.2010.06.012

Google Scholar

[24] I. Kunce, M. Polański, and J. Bystrzycki, "Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS)," International Journal of Hydrogen Energy, vol. 39, no. 18 (2014) p.9904–9910.

DOI: 10.1016/j.ijhydene.2014.02.067

Google Scholar

[25] J. Zhang et al., "Superior hydrogen sorption kinetics of TI0.20ZR0.20HF0.20NB0.40 High-Entropy alloy," Metals, vol. 11, no. 3 (2021) p.470.

DOI: 10.3390/met11030470

Google Scholar

[26] C. Zlotea, A. Bouzidi, J. Montero, G. Ek, and M. Sahlberg, "Compositional effects on the hydrogen storage properties in a series of refractory high entropy alloys," Frontiers in Energy Research, vol. 10 (2022).

DOI: 10.3389/fenrg.2022.991447

Google Scholar

[27] F. D. S. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, "Review and outlook on high-entropy alloys for hydrogen storage," Energy and Environmental Science, vol. 14, no. 10 (2021) p.5191–5227.

DOI: 10.1039/d1ee01543e

Google Scholar

[28] J. C. Moreno Pirajn, Ed., Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech, (2011).

DOI: 10.5772/823

Google Scholar

[29] Q. Lai et al., "How to design hydrogen storage Materials? Fundamentals, synthesis, and storage tanks," Advanced Sustainable Systems, vol. 3 (2019) 9.

DOI: 10.1002/adsu.201900043

Google Scholar

[30] R. B. Strozi, D. R. Leiva, J. Huot, W. J. B. Filho, and G. Zepon, "Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys," International Journal of Hydrogen Energy, vol. 46, no. 2 (2021) p.2351–2361.

DOI: 10.1016/j.ijhydene.2020.10.106

Google Scholar

[31] F. D. S. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, "Review and outlook on high-entropy alloys for hydrogen storage," Energy and Environmental Science, vol. 14, no. 10 (2021) p.5191–5227.

DOI: 10.1039/d1ee01543e

Google Scholar

[32] C. Zhang, Y. Wu, L. You, X. Cao, X. Liu, and X. Song, "Investigation on the activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy," Journal of Alloys and Compounds, vol. 781 (2019) p.613–620.

DOI: 10.1016/j.jallcom.2018.12.120

Google Scholar

[33] M. M. Nygård, G. Ek, D. Karlsson, M. H. Sørby, M. Sahlberg, and B. C. Hauback, "Counting electrons - A new approach to tailor the hydrogen sorption properties of high-entropy alloys," Acta Materialia, vol. 175 (2019) p.121–129.

DOI: 10.1016/j.actamat.2019.06.002

Google Scholar

[34] C. Zhang et al., "Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy," International Journal of Hydrogen Energy, vol. 45, no. 8 (2020) p.5367–5374.

DOI: 10.1016/j.ijhydene.2019.05.214

Google Scholar