Preparation of High Specific Capacitance Material Based on Activated Carbon-Manganese Dioxide Composite Using Lemon Peel (Citrus limon) Extract for Supercapacitor Electrode

Article Preview

Abstract:

In this study, the high specific capacitance material based on activated carbon-manganese dioxide (AC/MnO2) composite was prepared by an impregnation method. The MnO2 particle was synthesized via a redox reaction between KMnO4 and lemon peel extract as a bioreductor. The steps taken in this research were the preparation of lemon peel extract, then synthesis of MnO2 using lemon peel extract, synthesis of AC/MnO2 composites, and electrodes characterization using powder XRD, SEM, and CV. According to the results, the AC/MnO2 composite electrode had a higher specific capacitance compared to the synthesized MnO2. The powder XRD test results show that the synthesized MnO2 consisted of α, γ, and δ polymorphs. SEM data show that the average MnO2 particle size is 482.80 nm. The CV test results show that the highest AC/MnO2 capacitance is 188.17 F g-1 which was obtained at an AC/MnO2 ratio is 1:1. This suggests that the AC/MnO2 composite material has the potential to be used as a supercapacitor electrode material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 363)

Pages:

97-108

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Tarascon, Towards Sustainable and Renewable Systems for Electrochemical Energy Storage, Chem. Sus. Chem. 1 (2008) 8–9.

Google Scholar

[2] Y. Zhang et al., Preparation of nanostructures NiO and their electrochemical capacitive behaviors, Int. J. Hydrogen Energy. 34 (2009) 2467–2470.

DOI: 10.1016/j.ijhydene.2008.12.078

Google Scholar

[3] C. P. Parnia, F. Vignesh, K. Suresh, Electrode Materials for Supercapacitors : A Review of Recent Advances, Catalysts. 10 (2020) 969.

Google Scholar

[4] J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-Based Nanocomposites for High-Performance Supercapacitors, Prog. Mater. Sci. 74 (2015) 51-124.

Google Scholar

[5] M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, MnO2-based nanostructures for high-performance supercapacitors, J. Mater. Chem. A. 3 (2015) 21380–21423.

DOI: 10.1039/c5ta05523g

Google Scholar

[6] L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531

Google Scholar

[7] K. Simran, T. Shweta, and S. Ali, MnO2 nanorod loaded activated carbon for high-performance supercapacitors, J. Alloys Compd. 910 (2022) 164834.

DOI: 10.1016/j.jallcom.2022.164834

Google Scholar

[8] R. Jang, J. W. Lee, G. Yang, Y. J. Heo, and S. J. Park, Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors, Catalysts. 10 (2020) 1–10.

DOI: 10.3390/catal10020256

Google Scholar

[9] S. Vargheese, D. Muthu, D. Pattappan, K. V. Kavya, R. T. R. Kumar, and Y. Haldorai, Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: Constructing a 9.0 V symmetric supercapacitor cell, Electrochim. Acta. 364 (2020) 137291.

DOI: 10.1016/j.electacta.2020.137291

Google Scholar

[10] V. Thanigai et al., Co-precipitation synthesis of pseudocapacitive λ-MnO2 for 2D MXene (Ti3C2Tx) based asymmetric flexible supercapacitor, J. Energy Storage. 72 (2023) 108403.

DOI: 10.1016/j.est.2023.108403

Google Scholar

[11] S. Ying et al., Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innov. 26 (2022) 1–20.

Google Scholar

[12] A. M. Elbagory, A. A. Hussein, and M. Meyer, The in vitro immunomodulatory effects of gold nanoparticles synthesized from hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells, Int. J. Nanomedicine. 14 (2019) 9007–9018.

DOI: 10.2147/ijn.s216972

Google Scholar

[13] S. Gharehyakheh et al., Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157:H7 and Listeria monocytogenes in minced camel's meat: The role of nanotechnology in the food industry, Appl. Organomet. Chem. 34 (2020) 41–11.

DOI: 10.1002/aoc.5492

Google Scholar

[14] V. Kumar, K. Singh, S. Panwar, S. K. Mehta, Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol, Int Nano Lett. 7 (2017) 123-31.

DOI: 10.1007/s40089-017-0205-3

Google Scholar

[15] S. A. Moon, B. K. Salunke, B. Alkotaini, E. Sathiyamoorthi, B. S. Kim, Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract, IET nanobiotechnology. 9 (2015) 220-225.

DOI: 10.1049/iet-nbt.2014.0051

Google Scholar

[16] M. M. Haneefa, M. Jayandran, V. Balasubramanian, Green synthesis characterization and antimicrobial activity evaluation of manganese oxide nanoparticles and comparative studies with salicylalchitosan functionalized nanoform. Asian Journal of Pharmaceutics (AJP). 11 (2017) 65-74.

DOI: 10.1166/jbns.2016.1351

Google Scholar

[17] S. Chatterjee, A. Ja, A. Subramanian, S. A. Subramanian, Synthesis and characterization of manganese dioxide using brassica oleracea (cabbage), J. Ind. Pollut. Control. 33 (2017) 1627-1632.

Google Scholar

[18] N.O. Dewi, Y. Yulizar, Euphorbia heterophylla L. leaf extract-mediated synthesis of MnO2 nanoparticles and its characterization, Materials Today: Proceedings. 22 (2020) 199-204.

DOI: 10.1016/j.matpr.2019.08.088

Google Scholar

[19] S.A. Elsherif, H.M. Abuzeid, A.M. Hashem, N.A. Ghany, Green synthesis of MnO2 via plant extracts and its composite with exfoliated graphene for high-performance asymmetric supercapacitors, J. Energy Storage. 74 (2023) 109341.

DOI: 10.1016/j.est.2023.109341

Google Scholar

[20] A.M. Hashem, H. Abuzeid, M. Kaus, S. Indris, Green Synthesis of Nanosized Manganese Dioxide as Positive Electrode for Lithium-Ion Batteries Using Lemon Juice and Citrus Peel, Electrochim. Acta, 262 (2018) 74–81.

DOI: 10.1016/j.electacta.2018.01.024

Google Scholar

[21] N.A.I. Md Ishak, S. K. Kamarudin, and S. N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Mater. Res. Express. 6 (2019) 112004.

DOI: 10.1088/2053-1591/ab4458

Google Scholar

[22] V.V. Makarov, A.J. Love, S.S. Makarova, O.V. Sinitsyna, and I.V. Yaminsky, "Green" Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants, Acta Naturae. 6 (2014)35-44.

DOI: 10.32607/20758251-2014-6-1-35-44

Google Scholar

[23] L. G. Wage, Organic Chemistry, 8th Edition., Pearson Education, Pearson, 2012.

Google Scholar

[24] T. Hatakeyama, N. Okamoto, and T. Icitsubo, Thermal stability of MnO2 polymorphs, J. Solid State Chem. 305 (2022) 122683.

DOI: 10.1016/j.jssc.2021.122683

Google Scholar

[25] N. A. Rahma, A. Kurniasari, Y. D. Setyo Pambudi, H. M. Bintang, A. Zulfia, and C. Hudaya, Characteristics of Corncob-Originated Activated Carbon Using Two Different Chemical Agent, IOP Conf. Ser. Mater. Sci. Eng., 622 (2019) 012030.

DOI: 10.1088/1757-899x/622/1/012030

Google Scholar

[26] P. H. Patil, V. V. Kulkarni, T. D. Dongale, and S. A. Jadhav, α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application, J. Compos. Sci. 7 (2023) 167.

DOI: 10.3390/jcs7040167

Google Scholar

[27] P. Sinha, S. Banerjee, and K. K. Kar, Handbook of Nanocomposite Supercapacitor Materials II -Performance, Springer Series in Materials Science. 302 (2020) 145–175.

DOI: 10.1007/978-3-030-52359-6_6

Google Scholar

[28] S. Kour, S. Tanwar, and A. L. Sharma, MnO2 nanorod loaded activated carbon for high-performance supercapacitors, J. Alloys Compd. 910 (2022) 164834.

DOI: 10.1016/j.jallcom.2022.164834

Google Scholar