[1]
J. Tarascon, Towards Sustainable and Renewable Systems for Electrochemical Energy Storage, Chem. Sus. Chem. 1 (2008) 8–9.
Google Scholar
[2]
Y. Zhang et al., Preparation of nanostructures NiO and their electrochemical capacitive behaviors, Int. J. Hydrogen Energy. 34 (2009) 2467–2470.
DOI: 10.1016/j.ijhydene.2008.12.078
Google Scholar
[3]
C. P. Parnia, F. Vignesh, K. Suresh, Electrode Materials for Supercapacitors : A Review of Recent Advances, Catalysts. 10 (2020) 969.
Google Scholar
[4]
J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-Based Nanocomposites for High-Performance Supercapacitors, Prog. Mater. Sci. 74 (2015) 51-124.
Google Scholar
[5]
M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, MnO2-based nanostructures for high-performance supercapacitors, J. Mater. Chem. A. 3 (2015) 21380–21423.
DOI: 10.1039/c5ta05523g
Google Scholar
[6]
L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531
Google Scholar
[7]
K. Simran, T. Shweta, and S. Ali, MnO2 nanorod loaded activated carbon for high-performance supercapacitors, J. Alloys Compd. 910 (2022) 164834.
DOI: 10.1016/j.jallcom.2022.164834
Google Scholar
[8]
R. Jang, J. W. Lee, G. Yang, Y. J. Heo, and S. J. Park, Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors, Catalysts. 10 (2020) 1–10.
DOI: 10.3390/catal10020256
Google Scholar
[9]
S. Vargheese, D. Muthu, D. Pattappan, K. V. Kavya, R. T. R. Kumar, and Y. Haldorai, Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: Constructing a 9.0 V symmetric supercapacitor cell, Electrochim. Acta. 364 (2020) 137291.
DOI: 10.1016/j.electacta.2020.137291
Google Scholar
[10]
V. Thanigai et al., Co-precipitation synthesis of pseudocapacitive λ-MnO2 for 2D MXene (Ti3C2Tx) based asymmetric flexible supercapacitor, J. Energy Storage. 72 (2023) 108403.
DOI: 10.1016/j.est.2023.108403
Google Scholar
[11]
S. Ying et al., Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innov. 26 (2022) 1–20.
Google Scholar
[12]
A. M. Elbagory, A. A. Hussein, and M. Meyer, The in vitro immunomodulatory effects of gold nanoparticles synthesized from hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells, Int. J. Nanomedicine. 14 (2019) 9007–9018.
DOI: 10.2147/ijn.s216972
Google Scholar
[13]
S. Gharehyakheh et al., Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157:H7 and Listeria monocytogenes in minced camel's meat: The role of nanotechnology in the food industry, Appl. Organomet. Chem. 34 (2020) 41–11.
DOI: 10.1002/aoc.5492
Google Scholar
[14]
V. Kumar, K. Singh, S. Panwar, S. K. Mehta, Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol, Int Nano Lett. 7 (2017) 123-31.
DOI: 10.1007/s40089-017-0205-3
Google Scholar
[15]
S. A. Moon, B. K. Salunke, B. Alkotaini, E. Sathiyamoorthi, B. S. Kim, Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract, IET nanobiotechnology. 9 (2015) 220-225.
DOI: 10.1049/iet-nbt.2014.0051
Google Scholar
[16]
M. M. Haneefa, M. Jayandran, V. Balasubramanian, Green synthesis characterization and antimicrobial activity evaluation of manganese oxide nanoparticles and comparative studies with salicylalchitosan functionalized nanoform. Asian Journal of Pharmaceutics (AJP). 11 (2017) 65-74.
DOI: 10.1166/jbns.2016.1351
Google Scholar
[17]
S. Chatterjee, A. Ja, A. Subramanian, S. A. Subramanian, Synthesis and characterization of manganese dioxide using brassica oleracea (cabbage), J. Ind. Pollut. Control. 33 (2017) 1627-1632.
Google Scholar
[18]
N.O. Dewi, Y. Yulizar, Euphorbia heterophylla L. leaf extract-mediated synthesis of MnO2 nanoparticles and its characterization, Materials Today: Proceedings. 22 (2020) 199-204.
DOI: 10.1016/j.matpr.2019.08.088
Google Scholar
[19]
S.A. Elsherif, H.M. Abuzeid, A.M. Hashem, N.A. Ghany, Green synthesis of MnO2 via plant extracts and its composite with exfoliated graphene for high-performance asymmetric supercapacitors, J. Energy Storage. 74 (2023) 109341.
DOI: 10.1016/j.est.2023.109341
Google Scholar
[20]
A.M. Hashem, H. Abuzeid, M. Kaus, S. Indris, Green Synthesis of Nanosized Manganese Dioxide as Positive Electrode for Lithium-Ion Batteries Using Lemon Juice and Citrus Peel, Electrochim. Acta, 262 (2018) 74–81.
DOI: 10.1016/j.electacta.2018.01.024
Google Scholar
[21]
N.A.I. Md Ishak, S. K. Kamarudin, and S. N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Mater. Res. Express. 6 (2019) 112004.
DOI: 10.1088/2053-1591/ab4458
Google Scholar
[22]
V.V. Makarov, A.J. Love, S.S. Makarova, O.V. Sinitsyna, and I.V. Yaminsky, "Green" Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants, Acta Naturae. 6 (2014)35-44.
DOI: 10.32607/20758251-2014-6-1-35-44
Google Scholar
[23]
L. G. Wage, Organic Chemistry, 8th Edition., Pearson Education, Pearson, 2012.
Google Scholar
[24]
T. Hatakeyama, N. Okamoto, and T. Icitsubo, Thermal stability of MnO2 polymorphs, J. Solid State Chem. 305 (2022) 122683.
DOI: 10.1016/j.jssc.2021.122683
Google Scholar
[25]
N. A. Rahma, A. Kurniasari, Y. D. Setyo Pambudi, H. M. Bintang, A. Zulfia, and C. Hudaya, Characteristics of Corncob-Originated Activated Carbon Using Two Different Chemical Agent, IOP Conf. Ser. Mater. Sci. Eng., 622 (2019) 012030.
DOI: 10.1088/1757-899x/622/1/012030
Google Scholar
[26]
P. H. Patil, V. V. Kulkarni, T. D. Dongale, and S. A. Jadhav, α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application, J. Compos. Sci. 7 (2023) 167.
DOI: 10.3390/jcs7040167
Google Scholar
[27]
P. Sinha, S. Banerjee, and K. K. Kar, Handbook of Nanocomposite Supercapacitor Materials II -Performance, Springer Series in Materials Science. 302 (2020) 145–175.
DOI: 10.1007/978-3-030-52359-6_6
Google Scholar
[28]
S. Kour, S. Tanwar, and A. L. Sharma, MnO2 nanorod loaded activated carbon for high-performance supercapacitors, J. Alloys Compd. 910 (2022) 164834.
DOI: 10.1016/j.jallcom.2022.164834
Google Scholar