Fabrication of Metal Particles Using Differences in Standard Electrode Potentials

Article Preview

Abstract:

This study proposes a simple method for fabricating metal particles. Metal nanoparticles are synthesized in an aqueous solution. The synthesis method is based on the galvanic replacement of one metal with another, i.e., the deposition of a metal on the surface of another metal using difference between the standard electrode potentials of the metals under ultrasonication. An aqueous colloidal solution of metallic copper (Cu) nanoparticles is prepared using Cu acetate and a metallic zinc (Zn) plate. A similar colloidal solution of metallic Cu nanoparticles is prepared using Cu acetate and a metallic iron plate. No metallic nanoparticles are obtained using metallic aluminum and nickel (Ni) plates because of the formation of passivated layers. An aqueous colloidal solution of metallic Ni nanoparticles is prepared using Ni acetate and a metallic Zn plate; however, Ni0.7Zn0.3O is also formed. The results of the study show that the proposed method can be used to produce metallic particles in a simple manner.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 363)

Pages:

131-136

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Pajović, R.J. Dojčilović, S. Kaščáková, M. Réfrégiers, D.K. Božanić, V. Djoković: Colloids Surf. B Vol. 227 (2023), p.113340

DOI: 10.1016/j.colsurfb.2023.113340

Google Scholar

[2] R. González-Campuzano, J. Delgado-Aguillón, R.Y. Sato-Berrú, A. Sainz-Vidal, A.A. Rodríguez-Rosales, C.J. Román-Moreno, J. Garduño-Mejía: Opt. Laser Technol. Vol. 159 (2023), p.108989

DOI: 10.1016/j.optlastec.2022.108989

Google Scholar

[3] I. Kopal, M. Švecová, M. Plicka, M. Dendisová: Mater. Today Commun. Vol. 35 (2023), p.105722

DOI: 10.1016/j.mtcomm.2023.105722

Google Scholar

[4] Y. Kobayashi, L. M. Liz-Marzán: Stud Surf Sci Catal. Vol. 132 (2001), p.363

Google Scholar

[5] Y. Kobayashi, T. Sakuraba: Colloids Surf. A Vol. 317 (2008), p.756

Google Scholar

[6] A. Tago, M. Yanase, N. Yamauchi, K. Nakashima, D. Nagao, Y. Kobayashi: Colloids Surf. A Vol. 629 (2021), p.127524

DOI: 10.1016/j.colsurfa.2021.127524

Google Scholar

[7] Y. Suga, N. Yamauchi, K. Nakashima, Y. Kobayashi: Chem. Pap. Vol. 76 (2022), p.595

Google Scholar

[8] S. Adams, D. Thai, X. Mascona, A. M. Schwartzberg, J. Z. Zhang: Chem. Mater. Vol. 26 (2014), p.6805

Google Scholar

[9] A. S. Falchevskaya, A. Y. Prilepskii, S. A. Tsvetikova, E. I. Koshel, V. V. Vinogradov: Chem. Mater. Vol. 33 (2021), p.1571

Google Scholar

[10] S. Pisharath, Z. Fan, A.H. Ghee: Thermochim. Acta Vol. 635 (2016), p.59

Google Scholar

[11] W. Wang, L. Fu: Chem. Vol. 6 (2020), p.322

Google Scholar

[12] M.I. Alymov, N.M. Rubtsov, B.S. Seplyarskii, R.A. Kochetkov, V.A. Zelensky, A.B. Ankudinov: Mendeleev Commun. Vol. 27 (2017), p.631

DOI: 10.1016/j.mencom.2017.11.032

Google Scholar

[13] J.L. Trompette, L. Massot, H. Vergnes: Corros. Sci. Vol. 74 (2013), p.187

Google Scholar