[1]
A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on supercapacitors: Technologies and materials," Renew. Sustain. Energy Rev., vol. 58, p.1189–1206, 2016.
DOI: 10.1016/j.rser.2015.12.249
Google Scholar
[2]
W. Zhang, J. Xu, H. Wang, and S. Yao, "CNT anchored by NiCo2O4 nanoparticles with hybrid structure for ultrahigh-performance supercapacitor," J. Mater. Sci. Mater. Electron., vol. 31, no. 8, p.5948–5957, Apr. 2020.
DOI: 10.1007/s10854-020-03203-2
Google Scholar
[3]
Y. Li, L. Zheng, W. Wang, and Y. Wen, "Controllable Synthesis of NiCo2O4/CNT Composites for Supercapacitor Electrode Materials," Int. J. Electrochem. Sci., vol. 15, no. 11, p.11567–11583, 2020.
DOI: 10.20964/2020.11.18
Google Scholar
[4]
P. Wang et al., "Porous carbon for high-energy-density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors," Chem. Eng. J., vol. 375, no. June, 2019.
DOI: 10.1016/j.cej.2019.122020
Google Scholar
[5]
C. Li et al., "Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors," Chem. Eng. J., vol. 414, no. February, p.128781, 2021.
DOI: 10.1016/j.cej.2021.128781
Google Scholar
[6]
Q. Zhang et al., "Energy release from RuO2//RuO2 supercapacitors under dynamic discharge conditions," Electrochim. Acta, vol. 367, 2021.
DOI: 10.1016/j.electacta.2020.137455
Google Scholar
[7]
D. Wu et al., "MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance," Front. Mater., vol. 7, no. February, p.1–16, 2020.
DOI: 10.3389/fmats.2020.00002
Google Scholar
[8]
M. Shanmugavadivel, V. V. Dhayabaran, and M. Subramanian, "Fabrication of high energy and high power density supercapacitor based on MnCo2O4 nanomaterial," J. Phys. Chem. Solids, vol. 133, no. December 2018, p.15–20, 2019.
DOI: 10.1016/j.jpcs.2019.04.029
Google Scholar
[9]
S. Ramesh, K. Karuppasamy, A. Sivasamy, H. S. Kim, H. M. Yadav, and H. S. Kim, "Core-shell nanostructured of Co3O4@RuO2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application," J. Alloys Compd., vol. 877, p.160297, 2021.
DOI: 10.1016/j.jallcom.2021.160297
Google Scholar
[10]
Y. Kang, Y. H. Zhang, Q. Shi, H. Shi, D. Xue, and F. N. Shi, "Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries," J. Colloid Interface Sci., vol. 585, p.705–715, 2021.
DOI: 10.1016/j.jcis.2020.10.050
Google Scholar
[11]
R. Ding, L. Qi, M. Jia, and H. Wang, "Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors," Electrochim. Acta, vol. 107, p.494–502, 2013.
DOI: 10.1016/j.electacta.2013.05.114
Google Scholar
[12]
M. Singh Yadav, N. Singh, and S. M. Bobade, "Electrochemical analysis of CuO-AC based nanocomposite for supercapacitor electrode application," Mater. Today Proc., vol. 28, p.366–374, 2020.
DOI: 10.1016/j.matpr.2020.02.712
Google Scholar
[13]
S. Xu, D. Yang, F. Zhang, J. Liu, A. Guo, and F. Hou, "Fabrication of NiCo2O4 and carbon nanotube nanocomposite films as a high-performance flexible electrode of supercapacitors," RSC Adv., vol. 5, no. 90, p.74032–74039, Aug. 2015.
DOI: 10.1039/c5ra12855b
Google Scholar
[14]
X. Wang, C. Yan, A. Sumboja, and P. S. Lee, "High-performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor," Nano Energy, vol. 3, p.119–126, 2014.
DOI: 10.1016/j.nanoen.2013.11.001
Google Scholar
[15]
S. C. Rodrigues, M. C. Silva, J. A. Torres, and M. L. Bianchi, "Use of Magnetic Activated Carbon in a Solid Phase Extraction Procedure for Analysis of 2,4-dichlorophenol in Water Samples," Water. Air. Soil Pollut., vol. 231, no. 6, p.2020–2023, 2020.
DOI: 10.1007/s11270-020-04610-1
Google Scholar
[16]
M. Haripriya, R. Sivasubramanian, A. M. Ashok, S. Hussain, and G. Amarendra, "Hydrothermal synthesis of NiCo2O4–NiO nanorods for high-performance supercapacitors," J. Mater. Sci. Mater. Electron., 2019.
DOI: 10.1007/s10854-019-01063-z
Google Scholar
[17]
S. Yorgun and D. Yildiz, "Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4," J. Taiwan Inst. Chem. Eng., vol. 53, p.122–131, 2015.
DOI: 10.1016/j.jtice.2015.02.032
Google Scholar
[18]
I. Ghouma, M. Jeguirim, S. Dorge, L. Limousy, C. Matei Ghimbeu, and A. Ouederni, "Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature," Comptes Rendus Chim., vol. 18, no. 1, p.63–74, 2015.
DOI: 10.1016/j.crci.2014.05.006
Google Scholar
[19]
F. Cai, Y. Kang, H. Chen, M. Chen, and Q. Li, "Hierarchical CNT@ NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors," J. Mater. Chem. A, vol. 2, no. 29, p.11509–11515, Aug. 2014.
DOI: 10.1039/c4ta01235f
Google Scholar
[20]
S. Liu et al., "Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor," J. Mater. Sci., vol. 53, no. 4, p.2658–2668, 2018.
DOI: 10.1007/s10853-017-1742-x
Google Scholar
[21]
S. Wang, H. Nam, T. B. Gebreegziabher, and H. Nam, "Adsorption of acetic acid and hydrogen sulfide using NaOH impregnated activated carbon for indoor air purification," Eng. Reports, vol. 2, no. 1, p.1–22, 2020.
DOI: 10.1002/eng2.12083
Google Scholar
[22]
M. J. Pang et al., "Mesoporous NiCo2O4 nanospheres with a high specific surface area as electrode materials for high-performance supercapacitors," RSC Adv., vol. 6, no. 72, p.67839–67848, 2016.
DOI: 10.1039/c6ra14099h
Google Scholar
[23]
M. Shivakumar, S. Manjunatha, K. N. Nithyayini, M. S. Dharmaprakash, and K. L. Nagashree, "Electrocatalytic detection of nitrite at NiCo2O4 nanotapes synthesized via microwave-hydrothermal method," J. Electroanal. Chem., vol. 882, p.115016, 2021.
DOI: 10.1016/j.jelechem.2021.115016
Google Scholar
[24]
P. Wu et al., "A Low-Cost, Self-Standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors," Adv. Funct. Mater., vol. 27, no. 34, p.1–9, 2017.
DOI: 10.1002/adfm.201702160
Google Scholar
[25]
A. K. Singh, S. Agrahari, R. K. Gautam, and I. Tiwari, "A highly efficient NiCo2O4 decorated g-C3N4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye," Environ. Sci. Pollut. Res., no. 0123456789, 2023.
DOI: 10.1007/s11356-023-30373-3
Google Scholar
[26]
J. Xu et al., "Hydrothermal Synthesis of NiCo2O4/Activated Carbon Composites for Supercapacitor with Enhanced Cycle Performance," ChemistrySelect, vol. 2, no. 18, p.5189–5195, Jun. 2017.
DOI: 10.1002/slct.201700777
Google Scholar
[27]
D. Li, Y. Gong, and C. Pan, "Facile synthesis of hybrid CNTs/NiCo2S4 composite for high-performance supercapacitors," Sci. Rep., vol. 6, Jul. 2016.
DOI: 10.1038/srep29788
Google Scholar
[28]
A. Afif, S. M. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islam, and A. K. Azad, "Advanced materials and technologies for hybrid supercapacitors for energy storage – A review," J. Energy Storage, vol. 25, no. April, p.100852, 2019.
DOI: 10.1016/j.est.2019.100852
Google Scholar