Electrochemical Performance of Activated Carbon-NiCo2O4 as Candidate for Supercapacitor Electrode Materials

Article Preview

Abstract:

Asymmetric supercapacitors have been fabricated using nanostructured AC// AC-NiCo2O4 composite electrodes. The aim was to determine the performance of a modified electrode based on AC as the anode and AC-NiCo2O4 as the cathode. NiCo2O4 has been successfully synthesized using the co-precipitation method. FTIR, XRD, and SEM characterized the material. The NiCo2O4 confirmed the crystalline structure assigned to cubic spinel with nanospheres morphologies. The electrochemical properties of the prepared composite electrodes and fabricated supercapacitor cells have been studied using charge-discharge (CD) and cyclic voltammetry (CV) in 1M Et4NBF4 as an electrolyte. The optimized composition is AC-NiCo2O4 (15%), exhibiting a superior power density of 42.56 W kg-1. These results showed that AC-NiCo2O4 material could be a great candidate as an active material for supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 363)

Pages:

119-128

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on supercapacitors: Technologies and materials," Renew. Sustain. Energy Rev., vol. 58, p.1189–1206, 2016.

DOI: 10.1016/j.rser.2015.12.249

Google Scholar

[2] W. Zhang, J. Xu, H. Wang, and S. Yao, "CNT anchored by NiCo2O4 nanoparticles with hybrid structure for ultrahigh-performance supercapacitor," J. Mater. Sci. Mater. Electron., vol. 31, no. 8, p.5948–5957, Apr. 2020.

DOI: 10.1007/s10854-020-03203-2

Google Scholar

[3] Y. Li, L. Zheng, W. Wang, and Y. Wen, "Controllable Synthesis of NiCo2O4/CNT Composites for Supercapacitor Electrode Materials," Int. J. Electrochem. Sci., vol. 15, no. 11, p.11567–11583, 2020.

DOI: 10.20964/2020.11.18

Google Scholar

[4] P. Wang et al., "Porous carbon for high-energy-density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors," Chem. Eng. J., vol. 375, no. June, 2019.

DOI: 10.1016/j.cej.2019.122020

Google Scholar

[5] C. Li et al., "Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors," Chem. Eng. J., vol. 414, no. February, p.128781, 2021.

DOI: 10.1016/j.cej.2021.128781

Google Scholar

[6] Q. Zhang et al., "Energy release from RuO2//RuO2 supercapacitors under dynamic discharge conditions," Electrochim. Acta, vol. 367, 2021.

DOI: 10.1016/j.electacta.2020.137455

Google Scholar

[7] D. Wu et al., "MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance," Front. Mater., vol. 7, no. February, p.1–16, 2020.

DOI: 10.3389/fmats.2020.00002

Google Scholar

[8] M. Shanmugavadivel, V. V. Dhayabaran, and M. Subramanian, "Fabrication of high energy and high power density supercapacitor based on MnCo2O4 nanomaterial," J. Phys. Chem. Solids, vol. 133, no. December 2018, p.15–20, 2019.

DOI: 10.1016/j.jpcs.2019.04.029

Google Scholar

[9] S. Ramesh, K. Karuppasamy, A. Sivasamy, H. S. Kim, H. M. Yadav, and H. S. Kim, "Core-shell nanostructured of Co3O4@RuO2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application," J. Alloys Compd., vol. 877, p.160297, 2021.

DOI: 10.1016/j.jallcom.2021.160297

Google Scholar

[10] Y. Kang, Y. H. Zhang, Q. Shi, H. Shi, D. Xue, and F. N. Shi, "Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries," J. Colloid Interface Sci., vol. 585, p.705–715, 2021.

DOI: 10.1016/j.jcis.2020.10.050

Google Scholar

[11] R. Ding, L. Qi, M. Jia, and H. Wang, "Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors," Electrochim. Acta, vol. 107, p.494–502, 2013.

DOI: 10.1016/j.electacta.2013.05.114

Google Scholar

[12] M. Singh Yadav, N. Singh, and S. M. Bobade, "Electrochemical analysis of CuO-AC based nanocomposite for supercapacitor electrode application," Mater. Today Proc., vol. 28, p.366–374, 2020.

DOI: 10.1016/j.matpr.2020.02.712

Google Scholar

[13] S. Xu, D. Yang, F. Zhang, J. Liu, A. Guo, and F. Hou, "Fabrication of NiCo2O4 and carbon nanotube nanocomposite films as a high-performance flexible electrode of supercapacitors," RSC Adv., vol. 5, no. 90, p.74032–74039, Aug. 2015.

DOI: 10.1039/c5ra12855b

Google Scholar

[14] X. Wang, C. Yan, A. Sumboja, and P. S. Lee, "High-performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor," Nano Energy, vol. 3, p.119–126, 2014.

DOI: 10.1016/j.nanoen.2013.11.001

Google Scholar

[15] S. C. Rodrigues, M. C. Silva, J. A. Torres, and M. L. Bianchi, "Use of Magnetic Activated Carbon in a Solid Phase Extraction Procedure for Analysis of 2,4-dichlorophenol in Water Samples," Water. Air. Soil Pollut., vol. 231, no. 6, p.2020–2023, 2020.

DOI: 10.1007/s11270-020-04610-1

Google Scholar

[16] M. Haripriya, R. Sivasubramanian, A. M. Ashok, S. Hussain, and G. Amarendra, "Hydrothermal synthesis of NiCo2O4–NiO nanorods for high-performance supercapacitors," J. Mater. Sci. Mater. Electron., 2019.

DOI: 10.1007/s10854-019-01063-z

Google Scholar

[17] S. Yorgun and D. Yildiz, "Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4," J. Taiwan Inst. Chem. Eng., vol. 53, p.122–131, 2015.

DOI: 10.1016/j.jtice.2015.02.032

Google Scholar

[18] I. Ghouma, M. Jeguirim, S. Dorge, L. Limousy, C. Matei Ghimbeu, and A. Ouederni, "Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature," Comptes Rendus Chim., vol. 18, no. 1, p.63–74, 2015.

DOI: 10.1016/j.crci.2014.05.006

Google Scholar

[19] F. Cai, Y. Kang, H. Chen, M. Chen, and Q. Li, "Hierarchical CNT@ NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors," J. Mater. Chem. A, vol. 2, no. 29, p.11509–11515, Aug. 2014.

DOI: 10.1039/c4ta01235f

Google Scholar

[20] S. Liu et al., "Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor," J. Mater. Sci., vol. 53, no. 4, p.2658–2668, 2018.

DOI: 10.1007/s10853-017-1742-x

Google Scholar

[21] S. Wang, H. Nam, T. B. Gebreegziabher, and H. Nam, "Adsorption of acetic acid and hydrogen sulfide using NaOH impregnated activated carbon for indoor air purification," Eng. Reports, vol. 2, no. 1, p.1–22, 2020.

DOI: 10.1002/eng2.12083

Google Scholar

[22] M. J. Pang et al., "Mesoporous NiCo2O4 nanospheres with a high specific surface area as electrode materials for high-performance supercapacitors," RSC Adv., vol. 6, no. 72, p.67839–67848, 2016.

DOI: 10.1039/c6ra14099h

Google Scholar

[23] M. Shivakumar, S. Manjunatha, K. N. Nithyayini, M. S. Dharmaprakash, and K. L. Nagashree, "Electrocatalytic detection of nitrite at NiCo2O4 nanotapes synthesized via microwave-hydrothermal method," J. Electroanal. Chem., vol. 882, p.115016, 2021.

DOI: 10.1016/j.jelechem.2021.115016

Google Scholar

[24] P. Wu et al., "A Low-Cost, Self-Standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors," Adv. Funct. Mater., vol. 27, no. 34, p.1–9, 2017.

DOI: 10.1002/adfm.201702160

Google Scholar

[25] A. K. Singh, S. Agrahari, R. K. Gautam, and I. Tiwari, "A highly efficient NiCo2O4 decorated g-C3N4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye," Environ. Sci. Pollut. Res., no. 0123456789, 2023.

DOI: 10.1007/s11356-023-30373-3

Google Scholar

[26] J. Xu et al., "Hydrothermal Synthesis of NiCo2O4/Activated Carbon Composites for Supercapacitor with Enhanced Cycle Performance," ChemistrySelect, vol. 2, no. 18, p.5189–5195, Jun. 2017.

DOI: 10.1002/slct.201700777

Google Scholar

[27] D. Li, Y. Gong, and C. Pan, "Facile synthesis of hybrid CNTs/NiCo2S4 composite for high-performance supercapacitors," Sci. Rep., vol. 6, Jul. 2016.

DOI: 10.1038/srep29788

Google Scholar

[28] A. Afif, S. M. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islam, and A. K. Azad, "Advanced materials and technologies for hybrid supercapacitors for energy storage – A review," J. Energy Storage, vol. 25, no. April, p.100852, 2019.

DOI: 10.1016/j.est.2019.100852

Google Scholar