Microwave Absorption Performance of Durian-Husk-Derived Carbon Nanomaterials

Article Preview

Abstract:

The present research focuses on the development of highly efficient and lightweight electromagnetic wave (EMW) absorbers to address the growing issue of electromagnetic pollution. We investigate the use of carbon derived from biomass, specifically durian husks, to create carbon-based microwave absorbers with enhanced performance. A two-step process involving carbonization followed by potassium hydroxide (KOH) activation was employed to synthesize porous carbon materials. The microwave absorption properties were then analyzed using a vector network analyzer across a frequency range from 2 to 18 GHz, with a focus on key parameters such as reflection loss and complex permittivity. The sample, which was 2.0 mm thick and had 15% carbon nanomaterials mixed in with paraffin wax, had an optimal reflection loss of -30.8 dB at 12.8 GHz with an effective absorption bandwidth of 9.0 GHz, highlighting its strong electromagnetic wave absorption performance. The porous structure and large specific surface area significantly contributed to the material’s ability to absorb electromagnetic radiation. These findings highlight the potential of durian husk-derived carbon material as a highly effective and lightweight EMW absorber for practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 368)

Pages:

9-16

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Liu, M.Y. Yu, Z.Z. Yu and V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials, Mater. Today. 66 (2023) 245-272.

DOI: 10.1016/j.mattod.2023.03.022

Google Scholar

[2] H. Pang, Y. Duan, L. Huang, L. Song, J. Liu, T. Zhang, X. Yang, J. Liu, X. Ma, J. Di, X. Liu, Research advances in composition, structure and mechanisms of microwave absorbing materials, Compos. B. Eng. 224 (2021) 109173.

DOI: 10.1016/j.compositesb.2021.109173

Google Scholar

[3] T.Q. Dat, N.T. Ha, D.Q. Hung, Reduced graphene oxide-Cu0.5Ni0.5Fe2O4-polyaniline nanocomposite: preparation, characterization and microwave absorption properties, J. Electron. Mater. 46 (2017) 3707-3713.

DOI: 10.1007/s11664-017-5386-z

Google Scholar

[4] P.T. Tho, C.T.A. Xuan, N. Tran, N.Q. Tuan, W.H. Jeong, S.W. Kim, T.Q. Dat, V.D. Nguyen. T.N. Bach, T.D. Thanh, D.T. Khan and B.W. Lee, Ultra-wide effective absorption bandwidth of Cu, Co, and Ti co-doped SrFe12O19 hexaferrite, Ceram. Int. 48 (19) (2022) 27409-27419.

DOI: 10.1016/j.ceramint.2022.05.389

Google Scholar

[5] C.T.A. Xuan, P.T. Tho, T.Q. Dat, N.V. Khien, T.N. Bach, N.T.M. Hong, T.A. Ho, D.T. Khan, H.N. Toan and N. Tran, Development of high-efficiency microwave absorption properties of La1.5Sr0.5NiO4 and SrFe12O19-based materials composites, Surf. Interfaces. 39 (2023) 102890.

DOI: 10.1016/j.surfin.2023.102890

Google Scholar

[6] Q. Zhu, X. Luo, H. Li, J. Zang, J. Sun, X. Yan and Y. Liu, Construction and boosted electromagnetic wave absorption performance of porous aggregates of multi-element doped Fe₃O₄/(Fe, Co, Ni, Cu) alloy with magnetic/magnetic heterostructure, J. Magn. Magn. Mater. 588 (2023) 171432.

DOI: 10.1016/j.jmmm.2023.171432

Google Scholar

[7] Y. Lu, X. Zhao, Q. Tian, Y. Lin, P. Li, Y. Tao, Z. Wang, J. Ma, H. Xu and Y. Liu, Hierarchical porous biomass-derived carbon with rich nitrogen doping for high-performance microwave absorption and tensile strain sensing, Carbon 224 (2024) 119083.

DOI: 10.1016/j.carbon.2024.119083

Google Scholar

[8] J. Ma, H. Ren, X. Zhang, Z. Liu, S. Wang, W. Lian, C. Li, Y. Liu and L. Kong, Multilayer rose-like CoS₂-MoS₂ composites with high microwave absorption performance, J. Magn. Magn. Mater. 568 (2023) 170390.

DOI: 10.1016/j.jmmm.2023.170390

Google Scholar

[9] H. Zhang, Q. Ding, G. Zhao and J. Song, Synthesis of NiCo₂O₄/CF composites with heterogeneous interfaces as excellent microwave absorbers, Mater. Today Commun. 37 (2023) 106919.

DOI: 10.1016/j.mtcomm.2023.106919

Google Scholar

[10] H.J. Oh, V.D. Dao and H.S. Choi, Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction, Appl. Surf. Sci. 435 (2018) 7-15.

DOI: 10.1016/j.apsusc.2017.11.043

Google Scholar

[11] [X. Chen, H. Liu, D. Hu, H. Liu, W. Ma, Recent advances in carbon nanotubes-based microwave absorbing composites, Ceram. Int. 47 (2021) 23749-23761.

DOI: 10.1016/j.ceramint.2021.05.219

Google Scholar

[12] R. Qiang, S. Feng, Y. Chen, Q. Ma and B. Chen, Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption, J. Colloid Interface Sci. 606 (1) (2022) 406-423.

DOI: 10.1016/j.jcis.2021.07.144

Google Scholar

[13] H. Guan, Q. Wang, X. Wu, J. Pang, Z. Jiang, G. Chen, C. Dong, L. Wang and C. Gong, Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Compos. B. Eng. 207 (2021) 108562.

DOI: 10.1016/j.compositesb.2020.108562

Google Scholar

[14] R. Peymanfar and A. Ali Mirkhan, Biomass-derived materials: Promising, affordable, capable, simple, and lightweight microwave absorbing structures, J. Chem. Eng. 446 (1) (2022) 136903.

DOI: 10.1016/j.cej.2022.136903

Google Scholar

[15] Z. Wu, Z. Meng, C. Yao, Y. Deang, G. Zhang and Y. Wang, Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption, Mater. Chem. Phys. 275 (2022) 125246.

DOI: 10.1016/j.matchemphys.2021.125246

Google Scholar

[16] Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu and X. Kong, Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent, Carbon 161 (2020) 639-646.

DOI: 10.1016/j.carbon.2020.01.087

Google Scholar

[17] X. Fang, W. Li, X. Chen, Z. Wu, Z. Zhang and Y. Zou, Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening bandwidth, Carbon 198 (2022) 70-79.

DOI: 10.1016/j.carbon.2022.06.074

Google Scholar

[18] Q. Yang, Y. Gao, T. Li, L. Ma, Q. Qi, T. Yang and F. Meng, Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application, Carbon 226 (2024) 119203.

DOI: 10.1016/j.carbon.2024.119203

Google Scholar

[19] J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen Z and C. Gao, Wood-based straightway channel structure for high performance microwave absorption, Carbon 124 (2017) 492-498.

DOI: 10.1016/j.carbon.2017.07.088

Google Scholar

[20] N. Wang, F. Wu, A. Xie, X. Dai, M. Sun, Y. Qiu, Y. Wang, X. Lv and M. Wang, One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band, RSC Adv. 5 (2015) 40531-40535.

DOI: 10.1039/c5ra06307h

Google Scholar

[21] H. Zhao, Y. Cheng, H. Lv, B. Zhang, G. Ji and Y. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon, ACS Sustainable Chem. Eng. 6 (11) (2018) 15850-15857.

DOI: 10.1021/acssuschemeng.8b04461

Google Scholar

[22] H. Liu, S. Wu, C. You, N. Tian, Y. Li and N. Chopra, Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding, Carbon 172 (2021) 569-596.

DOI: 10.1016/j.carbon.2020.10.067

Google Scholar

[23] T. Chen, J. Cai, D. Gong, C. Liu, P. Liu, X. Cheng and D. Zhang, Facile fabrication of 3D biochar absorbers dual-loaded with Fe₃O₄ nanoparticles for enhanced microwave absorption, J. Alloys Compd. 935 (1) (2023) 168085.

DOI: 10.1016/j.jallcom.2022.168085

Google Scholar

[24] J. Wang, M. Zhou, Z. Xie, X. Hao, S. Tang, J. Wang, Z. Zou and G. Ji, Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section, J. Colloid Interface Sci. 612 (2022) 146-155.

DOI: 10.1016/j.jcis.2021.12.162

Google Scholar