[1]
L. Gregor, J. Zouhar, R. Kupcak, M. Varhanik, J. Sedlak, Design and stiffness distribution analysis of motorcycle swingarm made of carbon fiber composites, (2020) 162-165.
DOI: 10.21495/5896-3-162
Google Scholar
[2]
J. Zouhar, M. Slany, J. Sedlak, Z. Joska, Z. Pokorny, Application of carbon–flax hybrid composite in high performance electric personal watercraft, Polymers 14(9) (2022).
DOI: 10.3390/polym14091765
Google Scholar
[3]
R. Kupcak, J. Zouhar, Application of composite materials in sports optics, Manuf. Technol. 20(2) (2020) 200-209.
DOI: 10.21062/mft.2020.038
Google Scholar
[4]
P. Camanho, S. Hallett (Eds.), Composite Joints and Connections: Principles, Modelling and Testing, Woodhead Publishing, 2016.
Google Scholar
[5]
R. Pastore, A. Delfini, M. Albano, A. Vricella, M. Marchetti, Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions, Acta Astronaut. 170 (2020) 466-471.
DOI: 10.1016/j.actaastro.2020.02.019
Google Scholar
[6]
B. Sun, C. Xue, W. Shang, M. An, H. Zhao, The performance characterization of carbon fiber–reinforced plastic for space applications, J. Reinf. Plast. Compos. (2022).
DOI: 10.1177/07316844221141367
Google Scholar
[7]
O. Volkersen, Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten, Luftfahrtforschung 15 (1938) 41-47.
Google Scholar
[8]
M. Goland, E. Reissner, The stresses in cemented joints, J. Appl. Mech. 11(1) (1944) 17-27.
DOI: 10.1115/1.4009336
Google Scholar
[9]
D. Gleich, M. van Tooren, A. Beukers, Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures, J. Adhes. Sci. Technol. 15(9) (2001) 1091-1101.
DOI: 10.1163/156856101317035503
Google Scholar
[10]
L.F.M. da Silva, T. Rodrigues, M. Figueiredo, M. de Moura, J. Chousal, Effect of adhesive type and thickness on the lap shear strength, J. Adhes. 82(11) (2006) 1091-1115.
DOI: 10.1080/00218460600948511
Google Scholar
[11]
D. Zhang, Y. Huang, Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates, Prog. Org. Coat. 153 (2021).
DOI: 10.1016/j.porgcoat.2021.106135
Google Scholar
[12]
M. Shokrian, K. Shelesh-Nezhad, R. Najjar, The effects of Al surface treatment, adhesive thickness and microcapsule inclusion on the shear strength of bonded joints, Int. J. Adhes. Adhes. 89 (2019) 139-147.
DOI: 10.1016/j.ijadhadh.2019.01.001
Google Scholar
[13]
L. Guo, J. Liu, H. Xia, X. Li, X. Zhang, Effects of loading rate, temperature, and thickness on the tensile strength of precision adhesive joints, Polym. Test. 109 (2022).
DOI: 10.1016/j.polymertesting.2022.107528
Google Scholar
[14]
J. Xiong, Z. Zhang, X. Jin, W. Zhang, Theoretical modeling and calculation of stress fields in precision optical lens subjected to multi-point adhesive bonding assembly, Precis. Eng. 73 (2022) 257-269.
DOI: 10.1016/j.precisioneng.2021.09.008
Google Scholar
[15]
T. Müller, S. Haag, T. Bastuck, T. Gisler, H. Moser, Robust adhesive precision bonding in automated assembly cells, Proc. SPIE 89650 (2014).
DOI: 10.1117/12.2040681
Google Scholar
[16]
F. Niklaus, P. Enoksson, E. Kälvesten, G. Stemme, A method to maintain wafer alignment precision during adhesive wafer bonding, Sens. Actuators A 107(3) (2003) 273-278.
DOI: 10.1016/S0924-4247(03)00356-X
Google Scholar
[17]
R. Kupcak, J. Zouhar, L. Gregor, Precision bonding of CFRP parts with application in sport optics, Polym. Compos. (2021).
Google Scholar
[18]
R. Kupcak, J. Zouhar, J. Vilis, L. Gregor, D. Hrusecka, Precision and dimensional stability of bonded joints of carbon-fibre-reinforced polymers parts, Appl. Sci. 13(18) (2023).
DOI: 10.3390/app131810413
Google Scholar
[19]
N. Dytiuk, T. Marinis, J. Soucy, Control of void formation in adhesively bonded joints in the presence of filler, IMAPSource Proc. (2020) 246-258.
DOI: 10.4071/2380-4505-2020.1.000246
Google Scholar
[20]
M. Barzegar, Y. Lugovtsova, J. Bulling, T. Mishurova, Adhesive porosity analysis of composite adhesive joints using ultrasonic guided waves, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71(4) (2024) 485-495.
DOI: 10.1109/TUFFC.2024.3371671
Google Scholar
[21]
Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Pearson correlation coefficient calculation, online.
Google Scholar
[22]
Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Test of hypothesis for zero correlation of two random variables, online.
Google Scholar