Influence of Voids on Dimensional Accuracy and Stability in Bonded Metal–Composite Hybrid Joints

Article Preview

Abstract:

This study investigates the impact of voids on the precision and dimensional stability of bonded joints in hybrid CFRP–aluminum assemblies for optical applications. Six CFRP samples were fabricated using filament winding and bonded to anodized aluminum alloy sleeves with DP 190 epoxy. Four samples were cured at 70 °C and two at 20 °C. Dimensional stability was assessed through radial runout measurements at three stages: post-manufacture, after environmental conditioning (including thermal cycling between +70 °C and –40 °C and six thermal shock cycles), and following mechanical resistance tests (shock, bump, and vibration per ISO 9022-3:2015). X-ray computed tomography (CT) revealed frequent defects such as adhesive starvation at joint edges, overflow, and a significant number of voids introduced during mixing. Porosity analysis showed that the presence of voids with equivalent diameters ≥0.5 mm strongly correlated with increased changes in radial runout, suggesting reduced dimensional stability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 382)

Pages:

57-68

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Gregor, J. Zouhar, R. Kupcak, M. Varhanik, J. Sedlak, Design and stiffness distribution analysis of motorcycle swingarm made of carbon fiber composites, (2020) 162-165.

DOI: 10.21495/5896-3-162

Google Scholar

[2] J. Zouhar, M. Slany, J. Sedlak, Z. Joska, Z. Pokorny, Application of carbon–flax hybrid composite in high performance electric personal watercraft, Polymers 14(9) (2022).

DOI: 10.3390/polym14091765

Google Scholar

[3] R. Kupcak, J. Zouhar, Application of composite materials in sports optics, Manuf. Technol. 20(2) (2020) 200-209.

DOI: 10.21062/mft.2020.038

Google Scholar

[4] P. Camanho, S. Hallett (Eds.), Composite Joints and Connections: Principles, Modelling and Testing, Woodhead Publishing, 2016.

Google Scholar

[5] R. Pastore, A. Delfini, M. Albano, A. Vricella, M. Marchetti, Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions, Acta Astronaut. 170 (2020) 466-471.

DOI: 10.1016/j.actaastro.2020.02.019

Google Scholar

[6] B. Sun, C. Xue, W. Shang, M. An, H. Zhao, The performance characterization of carbon fiber–reinforced plastic for space applications, J. Reinf. Plast. Compos. (2022).

DOI: 10.1177/07316844221141367

Google Scholar

[7] O. Volkersen, Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten, Luftfahrtforschung 15 (1938) 41-47.

Google Scholar

[8] M. Goland, E. Reissner, The stresses in cemented joints, J. Appl. Mech. 11(1) (1944) 17-27.

DOI: 10.1115/1.4009336

Google Scholar

[9] D. Gleich, M. van Tooren, A. Beukers, Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures, J. Adhes. Sci. Technol. 15(9) (2001) 1091-1101.

DOI: 10.1163/156856101317035503

Google Scholar

[10] L.F.M. da Silva, T. Rodrigues, M. Figueiredo, M. de Moura, J. Chousal, Effect of adhesive type and thickness on the lap shear strength, J. Adhes. 82(11) (2006) 1091-1115.

DOI: 10.1080/00218460600948511

Google Scholar

[11] D. Zhang, Y. Huang, Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates, Prog. Org. Coat. 153 (2021).

DOI: 10.1016/j.porgcoat.2021.106135

Google Scholar

[12] M. Shokrian, K. Shelesh-Nezhad, R. Najjar, The effects of Al surface treatment, adhesive thickness and microcapsule inclusion on the shear strength of bonded joints, Int. J. Adhes. Adhes. 89 (2019) 139-147.

DOI: 10.1016/j.ijadhadh.2019.01.001

Google Scholar

[13] L. Guo, J. Liu, H. Xia, X. Li, X. Zhang, Effects of loading rate, temperature, and thickness on the tensile strength of precision adhesive joints, Polym. Test. 109 (2022).

DOI: 10.1016/j.polymertesting.2022.107528

Google Scholar

[14] J. Xiong, Z. Zhang, X. Jin, W. Zhang, Theoretical modeling and calculation of stress fields in precision optical lens subjected to multi-point adhesive bonding assembly, Precis. Eng. 73 (2022) 257-269.

DOI: 10.1016/j.precisioneng.2021.09.008

Google Scholar

[15] T. Müller, S. Haag, T. Bastuck, T. Gisler, H. Moser, Robust adhesive precision bonding in automated assembly cells, Proc. SPIE 89650 (2014).

DOI: 10.1117/12.2040681

Google Scholar

[16] F. Niklaus, P. Enoksson, E. Kälvesten, G. Stemme, A method to maintain wafer alignment precision during adhesive wafer bonding, Sens. Actuators A 107(3) (2003) 273-278.

DOI: 10.1016/S0924-4247(03)00356-X

Google Scholar

[17] R. Kupcak, J. Zouhar, L. Gregor, Precision bonding of CFRP parts with application in sport optics, Polym. Compos. (2021).

Google Scholar

[18] R. Kupcak, J. Zouhar, J. Vilis, L. Gregor, D. Hrusecka, Precision and dimensional stability of bonded joints of carbon-fibre-reinforced polymers parts, Appl. Sci. 13(18) (2023).

DOI: 10.3390/app131810413

Google Scholar

[19] N. Dytiuk, T. Marinis, J. Soucy, Control of void formation in adhesively bonded joints in the presence of filler, IMAPSource Proc. (2020) 246-258.

DOI: 10.4071/2380-4505-2020.1.000246

Google Scholar

[20] M. Barzegar, Y. Lugovtsova, J. Bulling, T. Mishurova, Adhesive porosity analysis of composite adhesive joints using ultrasonic guided waves, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71(4) (2024) 485-495.

DOI: 10.1109/TUFFC.2024.3371671

Google Scholar

[21] Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Pearson correlation coefficient calculation, online.

Google Scholar

[22] Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Test of hypothesis for zero correlation of two random variables, online.

Google Scholar