Evolution of Complex Systems and 1/f Noise: from Physics to Financial Markets

Article Preview

Abstract:

We introduce the stochastic multiplicative model of time intervals between the events, defining a multiplicative point process and analyze the statistical properties of the signal. Such a model system exhibits power-law spectral density S(f)~1/fβ, scaled as power of frequency for various values of β between 0.5 and 2. We derive explicit expressions for the power spectrum and other statistics and analyze the model system numerically. The specific interest of our analysis is related with the theoretical modeling of the nonlinear complex systems exhibiting fractal behavior and self-organization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 97-98)

Pages:

65-70

Citation:

Online since:

April 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.L. Gilden, T. Thornton and M.W. Mallon: Science Vol. 267 (1995), pp.1837-1839.

Google Scholar

[2] H. Wong: Microel. Reliab. Vol. 43 (2003), pp.585-599.

Google Scholar

[3] B. Kaulakys and T. Meškauskas: Phys. Rev. E Vol. 58 (1998), pp.7013-7019.

Google Scholar

[4] S. Maslov, C. Tang, Y. -C. Zhang: Phys. Rev. Lett. Vol. 83 (1999), pp.2449-2452.

Google Scholar

[5] S. Thurner, S.B. Lowen, M.C. Feurstein, C. Heneghan, H.G. Feichtinger, M.C. Teich: Fractals Vol. 5 (1997), pp.565-595. 6 Title of Publication (to be inserted by the publisher).

DOI: 10.1142/s0218348x97000462

Google Scholar

[6] B. Kaulakys and T. Meškauskas: Phys. Rev. E Vol. 58 (1998), pp.7013-7019.

Google Scholar

[7] B. Kaulakys: Phys. Lett. A Vol. 257 (1999), pp.37-42.

Google Scholar

[8] V. Gontis: Lithuanian J. Phys. Vol. 41 (2001), pp.551-555; cond-mat/0201514.

Google Scholar

[9] V. Gontis: Nonl. Anal.: Model. Contr. Vol. 7 (2002), pp.43-54; cond-mat/0211317.

Google Scholar

[10] V. Gontis and B. Kaulakys: cond-mat/0303089.

Google Scholar