Synthesis of One-Dimensional Chalcogenides by a Novel Hydrothermal Process

Article Preview

Abstract:

A TGA assisted hydrothermal process was employed to prepare chalcogenide nanorods. The different morphology of CdS nanomaterials prepared with and without the TGA assisted hydrothermal process indicates that TGA plays a critical role in controlling the nucleation and growth of CdS nanomaterials. The paper makes a preliminary presentation of the mechanisms of preparation of chalcogenide nanostructures with and without the use of the TGA assisted hydrothermal synthesis. FeS nanorods and nanoparticles have been prepared by the TGA assisted and without the TGA assisted hydrothermal process, respectively, which confirmed the proposed mechanism. X-ray diffraction (XRD) shows that the nanorods are of orthorhombic structure, and selected area electron diffraction (SAED) pattern showed that the FeS nanorods were single crystalse. Further investigation for the synthesis of other chalcogenides will be undertaken in order to confirm the proposed mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 99-100)

Pages:

203-208

Citation:

Online since:

July 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature Vol. 421(2003), p.241.

Google Scholar

[2] M. S Fuhrer, J. Nygard, L. Shih, M. Forero, Young-Gui Yoon, M.S.C. Mazzoni, Hyoung Joon Choi, Science Vol. 288 (2000), p.494.

Google Scholar

[3] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science Vol. 282 (1998), p.1105.

Google Scholar

[4] H. Zhang, X. Y. Ma, J. Xu, J. J. Niu, D. R. Yang, Nanotechnology Vol. 14 (2003), p.1.

Google Scholar

[5] H. Zhang, X. Y. Ma, J. Xu, J. J. Niu, J. Sha D. R. Yang, Journal of Crystal Growth Vol. 246 (2002), p.208.

Google Scholar

[6] C. Ye, G. Meng, Y. Wang, Z. Jiang, Z. L. Wang, J. Phys. Chem. B Vol. 106 (2002), p.10338.

Google Scholar

[7] Xudong Wang, Puxian Gao, Jing Li, Christopher J. Summers, Zhong Lin Wang, Advanced Materials Vol. 14 (2002), p.1732.

Google Scholar

[8] Won Il Park, Gyu-Chul Yi, Miyoung Kim, Stephen J. Pennycook, Advanced. Materials. Vol. 14 (2002), p.1841.

Google Scholar

[9] C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. Vol. 41 (2002), p.1188.

Google Scholar

[10] T. J. Trentler, K. M. Hichman, S. C. Geol, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science Vol. 270 (1995), p.1791.

Google Scholar

[11] Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, Y. Qian, J. Am. Chem. Soc. Vol. 122 (2000), p.12383.

Google Scholar

[12] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature Vol. 385 (1998), p.878.

Google Scholar

[13] B. Liu, C. Zeng, J. Am. Chem. Soc. Vol. 125 (2003), p.4430.

Google Scholar

[14] L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. Vol. 122 (2000), p.12700.

Google Scholar

[15] Y. Xie, J. Huang, B. Li, Y. Liu, Y. Qian, Advanced Materials Vol. 12 (2000), p.1523.

Google Scholar

[16] J. Yang, C. Xue, S. Yu, J. Zeng, Y. Qian, Angew. Chem. Int. Ed. Vol. 41 (2002), p.4697.

Google Scholar

[17] Hui Zhang, Xiangyang Ma, Yujie Ji, Jin Xu, Deren Yang, Chemical Physics Letters Vol. 377 (2003), p.654.

Google Scholar

[18] Hui Zhang, Yujie Ji, Xiangyang Ma, Jin Xu, Deren Yang, Nanotechnology Vol. 14 (2003), p.974.

Google Scholar

[19] Yujie Ji, Hui Zhang, Xiangyang Ma, Jin Xu, Deren Yang, J. Phys.: Condens. Matter Vol. 15 (2003), p.661.

Google Scholar

[20] C. P. Collier, T. Vossmeyer, J. R. Heath, Annu. Rev. Phys. Chem. Vol. 49 (1998), p.371.

Google Scholar

[21] S. M. Lee, S. N. Cho, J. W. Cheon, Advanced Materials Vol. 15 (2003), p.441.

Google Scholar

[22] V. Swayambunathan, D. Hayes, K. Schmidt, Y. Liao, D. Meisel, J. Am. Chem. Soc. Vol. 112 (1990), p.3831.

Google Scholar