Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: October 2010
Authors: Miao Zhang, Rui Jiang, Ning Bo Liao
Recent development in multiscale simulation of mechanical properties at material interface
Ningbo Liao 1, a, Miao Zhang 2, b, Rui Jiang 3, c
1, 2, 3 College of Mechanical & Electrical Engineering
Wenzhou University, Wenzhou, 325035, P.R.China
a lnb55@163.com, b zhangmiao1964@163.com, c jrui@wzu.edu.cn
Keywords: Molecular dynamics; Multiscale modeling; Material interface; Interfacial interaction; Interfacial heat transfer; Interfacial fracture
Abstract.
This is especially true for nanoscale devices and structures, where interface phenomena often dominate their overall thermal behavior [1].
References [1] Y.S.
Ye: Materials Science Forum Vol. 475-479 (2005), p. 4251 [12] M.
This is especially true for nanoscale devices and structures, where interface phenomena often dominate their overall thermal behavior [1].
References [1] Y.S.
Ye: Materials Science Forum Vol. 475-479 (2005), p. 4251 [12] M.
Online since: February 2013
Authors: Zhen Chen, Ling Yue Lv, Fei Xie, Wen Hua Song
The application and analysis of the risk assessment model
about BLEVE accident
Fei Xie1,2,a, Wen-hua Song1,b, Zhen Chen1,c,Ling-yue Lv1,d
1.Environment and Chemistry College, Tianjin Polytechnical Univeisity, Tianjin China
2.Tianjin City Public Security Fire Station, Hexi District Fire Brigade, Tianjin, China
ae-mail:xiefei820818@126.com
be-mail: songwenhuateam@sina.com
ce-mail: chenzhen3419@126.com
de-mail: yiqiandshowlove@126.com
Keywords:BLEVE; TNT equivalent method; 1,2-dichloropropane tank area; risk assessment; overpressure wave;
Abstract:The flammable vapor pressure inside the combustible liquid storage tanks in the fire environment elevates, and the of the tank wall the yield strength of enduring the heat decreases, which cause the collapse to occur soon, resulting in the happen of BLEVE.
The dike in the tank area is about 40meters long and 10 meters wide, 1 meter high, with the cover area of approximately 400m2.
REFERENCES [1] WuZongzhi.
[3] A.Wolf,Bleve kills two,NFPA J.92(6)(1998)1-8
[6] H.J.Chen,M.H.Lin,Modeling a boiling liquid expanding vapor explosion phenomenon with application to relief device design for liquefied ammonia storage,Ind.Eng.Chem.Res.38(1999)479–487
The dike in the tank area is about 40meters long and 10 meters wide, 1 meter high, with the cover area of approximately 400m2.
REFERENCES [1] WuZongzhi.
[3] A.Wolf,Bleve kills two,NFPA J.92(6)(1998)1-8
[6] H.J.Chen,M.H.Lin,Modeling a boiling liquid expanding vapor explosion phenomenon with application to relief device design for liquefied ammonia storage,Ind.Eng.Chem.Res.38(1999)479–487
Online since: August 2013
Authors: Bo Wen Hou, Liang Gao, Pu Wang
There are countries like Sweden adopt 1/30 rail cant.
In China, rail cant in tangent sections changed from 1/20 to 1/40 in 1965.
(a) Wheel-rail lateral force (b) Attack angle (c) Wheel-rail contact area (d) Wear power Fig.6 Dynamic responses corresponding to the guide wheelset of first vehicle Table 1 Calculated results under different rail cants Dynamic index R=400m R=600m R=800m 1/40 1/30 1/20 1/40 1/30 1/20 1/40 1/30 1/20 Wheel-rail lateral force[kN] Vehicle 1 53.365 53.298 53.056 38.134 37.721 36.525 29.283 28.512 26.674 Vehicle 2 53.087 52.813 52.310 38.616 37.361 36.763 28.858 28.411 27.937 Vehicle 3 53.061 52.617 52.375 37.864 37.229 36.553 28.037 28.009 27.720 Attack angle [mrad] Vehicle 1 5.007 4.902 4.891 2.339 2.302 2.029 1.718 1.428 1.243 Vehicle 2 5.091 4.997 4.288 2.475 2.393 2.070 1.681 1.512 1.473 Vehicle 3 5.297 5.037 4.510 2.525 2.408 2.138 1.489 1.488 1.457 Wear power [kN·m/s] Vehicle 1 10.017 9.771 9.248 3.848 3.831 3.811 2.534 2.503 2.393 Vehicle 2 9.943 9.346 8.829 4.074 4.002 3.949 2.502 2.467
The following conclusions are drawn: 1) The flange contact is less likely to occur under 1/20 rail cant.
Vehicle System Dynamics, 1994, 23(suppl): 469-479
In China, rail cant in tangent sections changed from 1/20 to 1/40 in 1965.
(a) Wheel-rail lateral force (b) Attack angle (c) Wheel-rail contact area (d) Wear power Fig.6 Dynamic responses corresponding to the guide wheelset of first vehicle Table 1 Calculated results under different rail cants Dynamic index R=400m R=600m R=800m 1/40 1/30 1/20 1/40 1/30 1/20 1/40 1/30 1/20 Wheel-rail lateral force[kN] Vehicle 1 53.365 53.298 53.056 38.134 37.721 36.525 29.283 28.512 26.674 Vehicle 2 53.087 52.813 52.310 38.616 37.361 36.763 28.858 28.411 27.937 Vehicle 3 53.061 52.617 52.375 37.864 37.229 36.553 28.037 28.009 27.720 Attack angle [mrad] Vehicle 1 5.007 4.902 4.891 2.339 2.302 2.029 1.718 1.428 1.243 Vehicle 2 5.091 4.997 4.288 2.475 2.393 2.070 1.681 1.512 1.473 Vehicle 3 5.297 5.037 4.510 2.525 2.408 2.138 1.489 1.488 1.457 Wear power [kN·m/s] Vehicle 1 10.017 9.771 9.248 3.848 3.831 3.811 2.534 2.503 2.393 Vehicle 2 9.943 9.346 8.829 4.074 4.002 3.949 2.502 2.467
The following conclusions are drawn: 1) The flange contact is less likely to occur under 1/20 rail cant.
Vehicle System Dynamics, 1994, 23(suppl): 469-479
Online since: November 2013
Authors: Che Hassan Che Haron, Jaharah A. Ghani, Abdul Razak Daud, Siti Haryani Tomadi
Table 1.
A B C D E 1 1 1 1 1 1 2 1 1 2 2 2 3 1 1 3 3 3 4 1 2 1 1 2 5 1 2 2 2 3 6 1 2 3 3 1 7 1 3 1 2 1 8 1 3 2 3 2 9 1 3 3 1 3 10 2 1 1 3 3 11 2 1 2 1 1 12 2 1 3 2 2 13 2 2 1 2 3 14 2 2 2 3 1 15 2 2 3 1 2 16 2 3 1 3 2 17 2 3 2 1 3 18 2 3 3 2 1 Results and Data Analysis The observed data was summarized to calculate the S/N ratio, .
The following observations were made: 1.
[2] Clyne, T.W., & Withers, P.J., An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge (1993), pp 479–480
XXXI, No. 1, January-March (2009), ABCM
A B C D E 1 1 1 1 1 1 2 1 1 2 2 2 3 1 1 3 3 3 4 1 2 1 1 2 5 1 2 2 2 3 6 1 2 3 3 1 7 1 3 1 2 1 8 1 3 2 3 2 9 1 3 3 1 3 10 2 1 1 3 3 11 2 1 2 1 1 12 2 1 3 2 2 13 2 2 1 2 3 14 2 2 2 3 1 15 2 2 3 1 2 16 2 3 1 3 2 17 2 3 2 1 3 18 2 3 3 2 1 Results and Data Analysis The observed data was summarized to calculate the S/N ratio, .
The following observations were made: 1.
[2] Clyne, T.W., & Withers, P.J., An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge (1993), pp 479–480
XXXI, No. 1, January-March (2009), ABCM
Online since: October 2004
Authors: Vera G. Sursaeva, Svetlana Protasova
Two limiting cases can be distinguished in this approach:
1.
Table 1.
GB I GB II GB III ∆T, °C Нb, eV A0b, m 2/s Нtj, eV A0tj, m 2/s № 1 21°<111> 18°<111> 3°<111> 398 - 479 1,0 0,03 1,8 4,5·10 4 № 2 20°<111> 25°<111> 5°<111> 380 - 420 2,0 1,8·10 6 № 3 20°<111> 10°<111> 30°<111> 470 - 510 0,4 3,9·10 -6 № 4 22°<100> 28°<100> 6°<100> 460 - 495 3,3 1,8·10 13 № 5 12°<100> 25°<100> 37°<100> 590 - 620 1,3 0,5 № 6 37°<100> 25°<100> 12°<100> 500 - 550 3,6 9,8·10 14 № 7 12°<100> 37°<100> 25°<100> 520 - 570 0,9 4,7·10 -4 4,4 1,8·1019 № 8 27°<110> 22°<110> 5°<110> 469 - 591 1,4 2,3 2,7 1,3·10 9 № 9 44°<110> 29°<110> 15°<110> 530 - 591 1,3 0,4 For each temperature the velocity V, the angle θ, and the width of the shrinking grain a were determined.
The compensation effect is the linear dependence between the activation enthalpy and logarithm of the pre - exponential factor: H=αlnA0 +β, (4) where α and β are constants, H the activation enthalpy, A0 the pre-exponential factor in the mobility equation A=A0 exp(-H/kT). 1,28 1,36 1,44 1,52 10-9 10-8 а) 510 385 T, o C420 460 Н1=1,8 eV Н1=1,0 eV H2= 2,0eV H3=0,4eV A, m 2 /s 1/Т, 103 /K 1,16 1,20 1,24 1,28 1,32 1,36 10 -9 10 -8 b) 570 550 470490 T, o С 530 510 Н9=1,3eV Н8=1,4eV Н8=2,7eV A, m2/s 1/Т, 10 3 /K 1,15 1,20 1,25 1,30 10 -10 10 -9 10 -8 c) 525 595 490 T, oC 560 Н7=0,9 eV Н7=4,3 eV A, m 2 /s 1/Т, 10 3 /K 1,14 1,16 1,28 1,36 10-9 10-8 d) 510 610 460 T, oC 590 Н5=1,3 eV Н6=3,6 eV Н4=3,3 eV A, m 2 /s 1/Т, 10 3 /K Fig.4.
References [1] A.V.
Table 1.
GB I GB II GB III ∆T, °C Нb, eV A0b, m 2/s Нtj, eV A0tj, m 2/s № 1 21°<111> 18°<111> 3°<111> 398 - 479 1,0 0,03 1,8 4,5·10 4 № 2 20°<111> 25°<111> 5°<111> 380 - 420 2,0 1,8·10 6 № 3 20°<111> 10°<111> 30°<111> 470 - 510 0,4 3,9·10 -6 № 4 22°<100> 28°<100> 6°<100> 460 - 495 3,3 1,8·10 13 № 5 12°<100> 25°<100> 37°<100> 590 - 620 1,3 0,5 № 6 37°<100> 25°<100> 12°<100> 500 - 550 3,6 9,8·10 14 № 7 12°<100> 37°<100> 25°<100> 520 - 570 0,9 4,7·10 -4 4,4 1,8·1019 № 8 27°<110> 22°<110> 5°<110> 469 - 591 1,4 2,3 2,7 1,3·10 9 № 9 44°<110> 29°<110> 15°<110> 530 - 591 1,3 0,4 For each temperature the velocity V, the angle θ, and the width of the shrinking grain a were determined.
The compensation effect is the linear dependence between the activation enthalpy and logarithm of the pre - exponential factor: H=αlnA0 +β, (4) where α and β are constants, H the activation enthalpy, A0 the pre-exponential factor in the mobility equation A=A0 exp(-H/kT). 1,28 1,36 1,44 1,52 10-9 10-8 а) 510 385 T, o C420 460 Н1=1,8 eV Н1=1,0 eV H2= 2,0eV H3=0,4eV A, m 2 /s 1/Т, 103 /K 1,16 1,20 1,24 1,28 1,32 1,36 10 -9 10 -8 b) 570 550 470490 T, o С 530 510 Н9=1,3eV Н8=1,4eV Н8=2,7eV A, m2/s 1/Т, 10 3 /K 1,15 1,20 1,25 1,30 10 -10 10 -9 10 -8 c) 525 595 490 T, oC 560 Н7=0,9 eV Н7=4,3 eV A, m 2 /s 1/Т, 10 3 /K 1,14 1,16 1,28 1,36 10-9 10-8 d) 510 610 460 T, oC 590 Н5=1,3 eV Н6=3,6 eV Н4=3,3 eV A, m 2 /s 1/Т, 10 3 /K Fig.4.
References [1] A.V.
Online since: January 2016
Authors: Alena Struhárová
Basic characteristics of used AAC are shown in table 1, typical phase composition in figure 1.
Table 1 Basic characteristics of used AAC Bulk density in dry state ρv [kg.m-3] 420 480 520 560 610 Compressive strength fc [MPa] 2,4 3,2 3,8 5,0 5,5 Figure 1 Typical X-Ray difractograph of AAC (bulk density 480 kg/m3) Measurement methods Compressive strength of AAC was determined using the standard method (by hydraulic testing apparatus) (STN EN 772-1:2001 Methods of test for masonry units – Part 1: Determination of compressive strength).
Table 2 Thermal characteristics of AAC Bulk density in dry state ρv [kg/m3] Mass moisture content Vhm [%] Coefficient of thermal conductivity λ [W/m.K] Specific volume thermal capacity c.ρ [J/m3.K] Thermal diffusivity a [m2/s] 420 0 0,084 4,16 . 105 2,04 . 10-7 5 0,105 5,45 . 105 1,93 . 10-7 10 0,133 6,87 . 105 1,97 . 10-7 20 0,196 9,75 . 105 2,01 . 10-7 480 0 0,090 4,54 . 105 1,91 . 10-7 5 0,107 5,75 . 105 1,87 . 10-7 10 0,136 7,54 . 105 1,80 . 10-7 20 0,205 10,82 . 105 1,90 . 10-7 520 0 0,098 4,75 . 105 2,06 . 10-7 5 0,121 6,19 . 105 1,86 . 10-7 10 0,145 7,41 . 105 1,89 . 10-7 20 0,227 11,54 . 105 1,98 . 10-7 560 0 0,117 5,82 . 105 2,01 . 10-7 5 0,136 7,39 . 105 1,75 . 10-7 10 0,164 9,06 . 105 1,81 . 10-7 20 0,227 12,60 . 105 1,83 . 10-7 610 0 0,122 6,20 . 105 1,90 . 10-7 5 0,148 7,95 . 105 1,86 . 10-7 10 0,172 9,61 . 105 1,81 . 10-7 20 0,237 12,72 . 105 1,88 . 10-7 Figure
References [1] M.
Volume 216, March 2011, pp. 479-484, [4] Beťko B., Tomašovič P.: Stavebná tepelná technika, Stavebná akustika.
Table 1 Basic characteristics of used AAC Bulk density in dry state ρv [kg.m-3] 420 480 520 560 610 Compressive strength fc [MPa] 2,4 3,2 3,8 5,0 5,5 Figure 1 Typical X-Ray difractograph of AAC (bulk density 480 kg/m3) Measurement methods Compressive strength of AAC was determined using the standard method (by hydraulic testing apparatus) (STN EN 772-1:2001 Methods of test for masonry units – Part 1: Determination of compressive strength).
Table 2 Thermal characteristics of AAC Bulk density in dry state ρv [kg/m3] Mass moisture content Vhm [%] Coefficient of thermal conductivity λ [W/m.K] Specific volume thermal capacity c.ρ [J/m3.K] Thermal diffusivity a [m2/s] 420 0 0,084 4,16 . 105 2,04 . 10-7 5 0,105 5,45 . 105 1,93 . 10-7 10 0,133 6,87 . 105 1,97 . 10-7 20 0,196 9,75 . 105 2,01 . 10-7 480 0 0,090 4,54 . 105 1,91 . 10-7 5 0,107 5,75 . 105 1,87 . 10-7 10 0,136 7,54 . 105 1,80 . 10-7 20 0,205 10,82 . 105 1,90 . 10-7 520 0 0,098 4,75 . 105 2,06 . 10-7 5 0,121 6,19 . 105 1,86 . 10-7 10 0,145 7,41 . 105 1,89 . 10-7 20 0,227 11,54 . 105 1,98 . 10-7 560 0 0,117 5,82 . 105 2,01 . 10-7 5 0,136 7,39 . 105 1,75 . 10-7 10 0,164 9,06 . 105 1,81 . 10-7 20 0,227 12,60 . 105 1,83 . 10-7 610 0 0,122 6,20 . 105 1,90 . 10-7 5 0,148 7,95 . 105 1,86 . 10-7 10 0,172 9,61 . 105 1,81 . 10-7 20 0,237 12,72 . 105 1,88 . 10-7 Figure
References [1] M.
Volume 216, March 2011, pp. 479-484, [4] Beťko B., Tomašovič P.: Stavebná tepelná technika, Stavebná akustika.
Online since: March 2008
Authors: Ai Kah Soh, Dai Ning Fang, Bin Wang, Y. Gu, Hai Cheng Guo
Optimal Analysis and Application in the Design of Ultra-light
Truss-core Structures
Bin Wang
1,a, Y.
Gu 1, Hai-Cheng Guo 1, Ai-Kah Soh 2,Dai-Ning Fang1,b 1 Department of Engineering Mechanics, Tsinghua University, Beijing, China 2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong a bin-wang02@mails.tsinghua.edu.cn, b fangdn@mail.tsinghua.edu.cn Key-words: truss-core; actuator; ultra-light; optimal analysis, cylinder Abstract.
Thus, the mathematical description of a detailed optimal problem Eq.(16) is given in terms of Eq.(1)-Eq.(15). 2 3 2 0 0 Find make min 1 2 s.t. 1 ( ) 0 2 3 3 1 0 2 6 ( c f T c f f f f Y f c f Y dd L L E L L L N L H E BL hH HG EN L L E BL H d EN E BL ε δ δ σ π σ , Ψ → + ≤ − ≤ - + 2 2 2 2 3 2 2 2 ) ( ) 1 0 24(1 ) 1 8 c f c c c b c L d L N HL E BL k d Ed l λ υ π π σ σ − ≤ − ≤ ≤ = (16) As an example of the optimal problem, a cylinder truss structure is considered firstly.
[5] Paul D , Kelly L , Venkayya V , Hess T: Journal of Aircraft, 2002, 39 (1): 18 - 29
Solids Struc., 2003 [10] Lu, T.J.: Acta Mechanica Sinica 18(5), 457-479, 2002 [11] Lu, T.J., Hutchinson, J.W. & Evans, A.G.: J.
Gu 1, Hai-Cheng Guo 1, Ai-Kah Soh 2,Dai-Ning Fang1,b 1 Department of Engineering Mechanics, Tsinghua University, Beijing, China 2 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong a bin-wang02@mails.tsinghua.edu.cn, b fangdn@mail.tsinghua.edu.cn Key-words: truss-core; actuator; ultra-light; optimal analysis, cylinder Abstract.
Thus, the mathematical description of a detailed optimal problem Eq.(16) is given in terms of Eq.(1)-Eq.(15). 2 3 2 0 0 Find make min 1 2 s.t. 1 ( ) 0 2 3 3 1 0 2 6 ( c f T c f f f f Y f c f Y dd L L E L L L N L H E BL hH HG EN L L E BL H d EN E BL ε δ δ σ π σ , Ψ → + ≤ − ≤ - + 2 2 2 2 3 2 2 2 ) ( ) 1 0 24(1 ) 1 8 c f c c c b c L d L N HL E BL k d Ed l λ υ π π σ σ − ≤ − ≤ ≤ = (16) As an example of the optimal problem, a cylinder truss structure is considered firstly.
[5] Paul D , Kelly L , Venkayya V , Hess T: Journal of Aircraft, 2002, 39 (1): 18 - 29
Solids Struc., 2003 [10] Lu, T.J.: Acta Mechanica Sinica 18(5), 457-479, 2002 [11] Lu, T.J., Hutchinson, J.W. & Evans, A.G.: J.
Online since: December 2010
Authors: Feng Gao, Ying Xin Ge, Yun Yi Liu, Huai Yu Sun, Xiang Zhang
The rice husk is placed in the hot air oven for drying at 110℃ for 1.5h.
Their range and levels are given in Table 1.
Following the calculation of the regression coefficients, the models for prediction of SiO2 extracting rate is determined as: Y=0.69-2.792×10-3×X1-1.305×10-3×X2-3.974×10-3×X3+0.013×X1×X2-0.019×X1×X3-1.479×10-3×X2×X3+0.012×X12 +0.012×X22 +0.013X32
Table3 Variance AONVA table for the response Source Sum of squares Degree of freedom Mean square F value Prob(p)>F Significant Model 4.148×10-3 9 4.609×10-4 5.87 0.0216 ** X1 6.238×10-5 1 6.238×10-5 0.79 0.4071 X2 1.363×10-5 1 1.363×10-5 0.17 0.6914 X3 1.264×10-4 1 1.264×10-4 1.61 0.2516 X1 X2 7.103×10-4 1 7.103×10-4 9.04 0.0238 ** X1X3 1.404×10-3 1 1.404×10-3 17.87 0.0555 X2X3 8.746×10-6 1 8.746×10-6 0.11 0.7500 X12 5.772×10-4 1 5.772×10-4 7.35 0.0351 ** X22 6.142×10-4 1 6.142×10-4 7.82 0.0313 ** X32 6.313×10-4 1 6.313×10-4 8.04 0.0298 ** Residual 4.712×10-4 6 7.854×10-5 Lack of Fit 3.151×10-4 3 1.050×10-4 2.02 0.2895 not significant Pure Error 1.562×10-4 3 5.205×10-4 Analysis of Response Surface.
References [1] A.Muthadhi, S.Kothandaraman.
Their range and levels are given in Table 1.
Following the calculation of the regression coefficients, the models for prediction of SiO2 extracting rate is determined as: Y=0.69-2.792×10-3×X1-1.305×10-3×X2-3.974×10-3×X3+0.013×X1×X2-0.019×X1×X3-1.479×10-3×X2×X3+0.012×X12 +0.012×X22 +0.013X32
Table3 Variance AONVA table for the response Source Sum of squares Degree of freedom Mean square F value Prob(p)>F Significant Model 4.148×10-3 9 4.609×10-4 5.87 0.0216 ** X1 6.238×10-5 1 6.238×10-5 0.79 0.4071 X2 1.363×10-5 1 1.363×10-5 0.17 0.6914 X3 1.264×10-4 1 1.264×10-4 1.61 0.2516 X1 X2 7.103×10-4 1 7.103×10-4 9.04 0.0238 ** X1X3 1.404×10-3 1 1.404×10-3 17.87 0.0555 X2X3 8.746×10-6 1 8.746×10-6 0.11 0.7500 X12 5.772×10-4 1 5.772×10-4 7.35 0.0351 ** X22 6.142×10-4 1 6.142×10-4 7.82 0.0313 ** X32 6.313×10-4 1 6.313×10-4 8.04 0.0298 ** Residual 4.712×10-4 6 7.854×10-5 Lack of Fit 3.151×10-4 3 1.050×10-4 2.02 0.2895 not significant Pure Error 1.562×10-4 3 5.205×10-4 Analysis of Response Surface.
References [1] A.Muthadhi, S.Kothandaraman.
Online since: July 2017
Authors: I.P. Popov, E.G. Demyanenko
Demyanenko 1, a, I.P.
Popov 1, b 1 Samara University, Samara 443086, Russian Federation ae-dem@mail.ru, bigr_popov@mail.ru Keywords: microstructure, alloy, aluminum, corrosion resistance, grain, phase composition.
Summary 1.
References [1] I.N.
Vyalov, Multi-phases and multi-components materials under dynamic loading: Materials of 10th European Mechanics of Materials Conference, Kazimierz Dolny, Poland, 2007, pp. 479-485
Popov 1, b 1 Samara University, Samara 443086, Russian Federation ae-dem@mail.ru, bigr_popov@mail.ru Keywords: microstructure, alloy, aluminum, corrosion resistance, grain, phase composition.
Summary 1.
References [1] I.N.
Vyalov, Multi-phases and multi-components materials under dynamic loading: Materials of 10th European Mechanics of Materials Conference, Kazimierz Dolny, Poland, 2007, pp. 479-485
Online since: November 2012
Authors: Veli Tapani Kuokkala, Mikko Hokka, Dmitri Gomon
Fig 1.
Table 1.
Experimental data and data calculated using the JC model: a) initial parameter set at 1600s-1, b) optimized parameter set at 1600s-1, c) initial parameter set at 2800s-1, and d) optimized parameter set at 2800s-1.
References [1] E.O.
Phys E: Scientific instruments, 16 (1983), 477-479 [4] G.R.
Table 1.
Experimental data and data calculated using the JC model: a) initial parameter set at 1600s-1, b) optimized parameter set at 1600s-1, c) initial parameter set at 2800s-1, and d) optimized parameter set at 2800s-1.
References [1] E.O.
Phys E: Scientific instruments, 16 (1983), 477-479 [4] G.R.