Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: July 2019
Authors: Deana Wahyuningrum, Cyntia Stiani Anggraini, Anita Alni
Fig. 1.
Subsequently, the mixture was poured into water: methanol (1:1, v/v) as coagulation media to produce the greyish precipitation of PES with the yields of 94.23%.
In the end of reaction, polymer solution was precipitated by slowly poured in a mixture of water : methanol (1: 1, v/v).
References [1] H.
Lu, Photoluminescence properties of poly(p-phenylene vinylene) films deposited by chemical vapor deposition, Journal of Luminescence 145 (2014) 473-479 [7] C.
Subsequently, the mixture was poured into water: methanol (1:1, v/v) as coagulation media to produce the greyish precipitation of PES with the yields of 94.23%.
In the end of reaction, polymer solution was precipitated by slowly poured in a mixture of water : methanol (1: 1, v/v).
References [1] H.
Lu, Photoluminescence properties of poly(p-phenylene vinylene) films deposited by chemical vapor deposition, Journal of Luminescence 145 (2014) 473-479 [7] C.
Online since: December 2016
Authors: Jantip Setthayanond, Porntip Tooptompong, Podjanalak Chaiyapongputti, Phussadee Lim
Bleaching was carried out at 100°C for 1 hour.
Table 1.
References [1] The Freedonia Group, Inc.
Carbon. 34(4) (1996) 471-479
Colorants and Auxiliaries: Organic Chemistry and Application Properties (Volume 1-Colorants), 2nd ed.
Table 1.
References [1] The Freedonia Group, Inc.
Carbon. 34(4) (1996) 471-479
Colorants and Auxiliaries: Organic Chemistry and Application Properties (Volume 1-Colorants), 2nd ed.
Online since: November 2011
Authors: Jian Chun Chen, Chun Xu Pan, Cheng Wei Liao
The detailed fabrication steps are as follows:
1) Melting a certain amount of Al ingots by using a medium-frequency induction furnace and heating to 900 – 1100 ˚C.
Hydrogen content H = 1~2 ml/100gAl H ≤ 0.2 ml/l00gAl Sr, Fe, Si contents (wt%) Sr(10±1) wt%; Fe≤0.3 wt%; Si≤0.3 wt% Sr(20±2) wt%; Fe≤0.3 wt%; Si≤0.3 wt% Casting property Poor Good Conclusions As a new generation and high efficiency modifier, high Sr content Al-Sr20 master alloy has been successfully produced by using a novel “direct reaction - hot extrusion” manufacturing technique.
References [1] S.S.
Vol. 479 (2009), p. 670
Vol. 24(1) (2008), p. 45
Hydrogen content H = 1~2 ml/100gAl H ≤ 0.2 ml/l00gAl Sr, Fe, Si contents (wt%) Sr(10±1) wt%; Fe≤0.3 wt%; Si≤0.3 wt% Sr(20±2) wt%; Fe≤0.3 wt%; Si≤0.3 wt% Casting property Poor Good Conclusions As a new generation and high efficiency modifier, high Sr content Al-Sr20 master alloy has been successfully produced by using a novel “direct reaction - hot extrusion” manufacturing technique.
References [1] S.S.
Vol. 479 (2009), p. 670
Vol. 24(1) (2008), p. 45
Online since: January 2013
Authors: An Chun Cheng, Ming Shu Wang, De Kang Zhu, Xiao Jia Wang, Ren Yong Jia, Xin Zhang, Yang He
Figure 1.
References [1] Dittmar KA, Goodenbour JM, Pan J: PLoS Genet.
Vol. 479-481(2006), p. 10 [14] R.
Vol. 1–38(1998), p. 209 [26] R.J.
Vol. 1-10(2005), p. 37 [36] Sakai H, Washio T, Saito R: Gene.
References [1] Dittmar KA, Goodenbour JM, Pan J: PLoS Genet.
Vol. 479-481(2006), p. 10 [14] R.
Vol. 1–38(1998), p. 209 [26] R.J.
Vol. 1-10(2005), p. 37 [36] Sakai H, Washio T, Saito R: Gene.
Online since: December 2019
Authors: Zavani Nur Hikmah, Ina Hendiani, Agus Susanto
The treatment group, VEGF level at D0 was 3.8 pg/ml and D7 was 8,1 pg/ml.
References [1] A.T.
Biomed Res Int. 2014 (2014) 1-9
Hematol. 12 (6) (2005) 473-479
Haemost. 91 (1) (2004) 4-15
References [1] A.T.
Biomed Res Int. 2014 (2014) 1-9
Hematol. 12 (6) (2005) 473-479
Haemost. 91 (1) (2004) 4-15
Online since: October 2025
Authors: Igor Aviezena Eris, Hikmah Fajar Assidiq, Didit Wahyudi, Loetvy Wahyuningtiyas
Fig. 1.
Table 1.
Mean Spatial Value of Slope Soil Type Class Area (Ha) Area that impacted by flood (Ha) Ratio Flat 1.921.004,51 31.792,24 0,0165 Sloping 70.155,23 75,94 0,0011 Rather Step 1.837,65 20,46 0,0111 Step 91,80 1,76 0,0191 Very Step 1,80 0,00 0,0000 Slope’s Mean Spatial Value 0,0479 Table 4.
References [1] Casey, Michael. 2015.
IOP Conference Series: Earth and Environmental Science, 311(1), 012085. https://doi.org/10.1088/1755-1315/311/1/012085 [10] Faisol, Arif., Bachri, Samsul., & Mashudi. 2024.
Table 1.
Mean Spatial Value of Slope Soil Type Class Area (Ha) Area that impacted by flood (Ha) Ratio Flat 1.921.004,51 31.792,24 0,0165 Sloping 70.155,23 75,94 0,0011 Rather Step 1.837,65 20,46 0,0111 Step 91,80 1,76 0,0191 Very Step 1,80 0,00 0,0000 Slope’s Mean Spatial Value 0,0479 Table 4.
References [1] Casey, Michael. 2015.
IOP Conference Series: Earth and Environmental Science, 311(1), 012085. https://doi.org/10.1088/1755-1315/311/1/012085 [10] Faisol, Arif., Bachri, Samsul., & Mashudi. 2024.
Online since: April 2015
Authors: Jozef Kačur, Jozef Minár, P. Kišon
The constitutive relations are represented by empirical expressions
-see [11]
Sw =
1
(1 + (αhc)n)m,
kw(Sw) = S1/2w [1 − (1 − S1/m
w )m]2 ,
kn(Sw) = (1 − Sw)1/2(1 − S1/m
w )2m,
(4)
where n > 1, m = 1 − 1/n, α > 0 [L−1] are empirical soil parameters, and capillary pressure head
hc = pc/(ρwg).
In (5), we replace ∂xhc = ∂hc ∂Sw ∂xSw = fc(Sw)∂xSw, where fc(Sw) := − 1 α(n − 1) 1 (1 − S1/m w )m S1/m w .
Then, we can solve only one PDE in terms of Sw which reads Φ∂tSw = Ks µw ∂x (D(Sw)∂xSw + qtµn kw ρkw + kn + kwkn µkw + kn(1 − ρ)ω2 g (r0 + x)) , (6) where D(Sw) = a(Sw) b(Sw)fc(Sw) with a(Sw) =(1 − Sw)1/2 (1 − S1/m w )2m S1/2w (1 − (1 − S1/m w )m)2 , b(Sw) =(1 − Sw)1/2 (1 − S1/m w )2m + µS1/2w (1 − (1 − S1/m w )m)2
System (12) is completed with discrete versions of the front movement (9) ˙s(t) = − Ksm2 α(n − 1)µn(1/m + 1/2)s(t) d dzLB(z) � � � z=1 (13) where LB(z) is the quadratic polynomial passing through the points (yN−2, S1/m+1/2 N−2 ), (yN−1, S1/m+1/2 N−1 ), (1, 0).
[5] J.Chen, J.W.Hopmans, M.E.Grismer, Prameter estimationof two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources 22 (1999) 479-493
In (5), we replace ∂xhc = ∂hc ∂Sw ∂xSw = fc(Sw)∂xSw, where fc(Sw) := − 1 α(n − 1) 1 (1 − S1/m w )m S1/m w .
Then, we can solve only one PDE in terms of Sw which reads Φ∂tSw = Ks µw ∂x (D(Sw)∂xSw + qtµn kw ρkw + kn + kwkn µkw + kn(1 − ρ)ω2 g (r0 + x)) , (6) where D(Sw) = a(Sw) b(Sw)fc(Sw) with a(Sw) =(1 − Sw)1/2 (1 − S1/m w )2m S1/2w (1 − (1 − S1/m w )m)2 , b(Sw) =(1 − Sw)1/2 (1 − S1/m w )2m + µS1/2w (1 − (1 − S1/m w )m)2
System (12) is completed with discrete versions of the front movement (9) ˙s(t) = − Ksm2 α(n − 1)µn(1/m + 1/2)s(t) d dzLB(z) � � � z=1 (13) where LB(z) is the quadratic polynomial passing through the points (yN−2, S1/m+1/2 N−2 ), (yN−1, S1/m+1/2 N−1 ), (1, 0).
[5] J.Chen, J.W.Hopmans, M.E.Grismer, Prameter estimationof two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources 22 (1999) 479-493
Online since: March 2015
Authors: Zhang Li Lan, Yi Cai Li, Jun Liu, Lin Zhu
The first pixel
The second pixel
The m×nst pixel
……
1
0
1
0
0
1
0
1
…
…
0
1
1
1
0
0
0
1
…
…
1
1
1
0
0
1
1
0
…
…
……
R
G
B
R
G
B
R
G
B
0
1
0
1
1
0
0
1
…
…
1
1
1
0
1
1
1
0
…
…
1
0
0
0
1
1
1
0
…
…
……
Algorithm of
improved DES
Algorithm of
improved DES
Algorithm of
improved DES
……
……
Figure 1.
The process shows at the following mathematical expression: Li=Ri-1, Ri=Li-1⊕f(Ki,Ri-1),i=1,2,3,……n
Mathematical expression of decryption: Li= Li-1, Ri =Ri-1⊕f(Ri-1,Kn-i+1) , i=1,2,3,4,…….
Definition of the logistic function: xk+1=u*xk(1-xk)
San Antonio: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, 2009, 474-479 [3] Som S.
The process shows at the following mathematical expression: Li=Ri-1, Ri=Li-1⊕f(Ki,Ri-1),i=1,2,3,……n
Mathematical expression of decryption: Li= Li-1, Ri =Ri-1⊕f(Ri-1,Kn-i+1) , i=1,2,3,4,…….
Definition of the logistic function: xk+1=u*xk(1-xk)
San Antonio: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, 2009, 474-479 [3] Som S.
Online since: April 2020
Authors: Libor Ďuriška, Stefan Demcak, Marian Holub, Martin Pipíška, Simona Ballova, Vladimir Fristak, Miroslav Hornik, Gerhard Soja
The pH values were measured after stirring of PCMs with deionized water (ratio 1:2.5) for 1 h and stabilization for 1 h (Multi 3510 IDS, WTW, Germany).
Radiometric analysis All solutions used in the experiments were spiked with 137CsCl (5.406 MBq mL-1; CsCl 20 mg L-1 in 3 g L-1 HCl) solution obtained from the Czech Metrological Institute (Czech Republic).
GW has the lowest SSA (6.69 m2 g-1) and shows high Cs adsorption capacity comparable to PC with highest SSA 221 m2 g-1.
References [1] S.
Wood Sci. 60 (2014) 473-479
Radiometric analysis All solutions used in the experiments were spiked with 137CsCl (5.406 MBq mL-1; CsCl 20 mg L-1 in 3 g L-1 HCl) solution obtained from the Czech Metrological Institute (Czech Republic).
GW has the lowest SSA (6.69 m2 g-1) and shows high Cs adsorption capacity comparable to PC with highest SSA 221 m2 g-1.
References [1] S.
Wood Sci. 60 (2014) 473-479
Online since: December 2014
Authors: Jiří Kolář, Pavla Lejsková, Rudolf Kampf
Calculations are shown in following Table 1.
Table 1 Gross weight deliveries to the i-th regional centres by postcode for the year 2009, offsetting factory supply in Central Europe (qi ) City Area postcode ∑ qi xi yi xi * ∑ qi yi * ∑ qi Karlovy Vary 35,36 342 468 1,4 13,0 479 455,2 4 452 084,0 Pilsen 30-34 359 913 2,3 11,6 827 799,9 4 174 990,8 Ústí nad Labem 40,41,43 264 811 3,5 14,4 926 838,5 3 813 278,4 Č.
Budějovice 37,39 415 019 4,5 9,4 1 867 585,5 3 901 178,6 Praha 1,2 2 553 118 4,1 2,3 10 467 783,8 5 872 171,4 Liberec 46-47 84 525 5,4 14,8 456 435,0 1 250 970,0 H.
Králové 50,51,54 168 466 7,0 13,2 1 179 262,0 2 223 751,2 Pardubice 53,56 119 448 6,9 12,6 824 191,2 1 505 044,8 Brno 6 375 856 8,6 10,2 3 232 361,6 3 833 731,2 Olomouc 75-79 707 514 9,8 11,5 6 933 637,2 8 136 411,0 Ostrava 70-74 207 152 11,8 12,3 2 444 393,6 2 547 969,6 Jihlava 58,59 87 602 6,7 11,7 586 933,4 1 024 943,4 Sczczecin 7 965 257 4,3 22,6 4 150 605,1 21 814 808,2 Poznán 6 1 057 223 8,7 19,6 9 197 840,1 20 721 570,8 Wroclaw 5 730 781 9,2 16,0 6 723 185,2 11 692 496,0 Bydgoszcz 8 1 017 189 10,5 22,0 10 680 484,5 22 378 158,0 Katowice 4 1 134 506 13,1 13,7 14 862 028,6 15 542 732,2 Lódž 9 950 910 13,5 18,0 12 837 285,0 17 116 380,0 Krakow 30-34 650 610 14,9 13,4 9 694 089,0 8 718 174,0 Olsztyn 1 1 086 692 14,8 24,3 16 083 041,6 26 406 615,6 Warszawa 0 1 998 220 16,1 19,8 32 171 342,0 39 564 756,0 Rzeszow 35-39 266 967 18,8 13,7 5 018 979,6 3 657 447,9 Lublin 2 1 214 477 19,4 2,3 23 560 853,8 2 793 297,1 Bratislava 8,90 224 088 9,8 7,1 2 196 062,4 1 591 024,8 Trenčín 91,92,94,95
References [1] V.
Table 1 Gross weight deliveries to the i-th regional centres by postcode for the year 2009, offsetting factory supply in Central Europe (qi ) City Area postcode ∑ qi xi yi xi * ∑ qi yi * ∑ qi Karlovy Vary 35,36 342 468 1,4 13,0 479 455,2 4 452 084,0 Pilsen 30-34 359 913 2,3 11,6 827 799,9 4 174 990,8 Ústí nad Labem 40,41,43 264 811 3,5 14,4 926 838,5 3 813 278,4 Č.
Budějovice 37,39 415 019 4,5 9,4 1 867 585,5 3 901 178,6 Praha 1,2 2 553 118 4,1 2,3 10 467 783,8 5 872 171,4 Liberec 46-47 84 525 5,4 14,8 456 435,0 1 250 970,0 H.
Králové 50,51,54 168 466 7,0 13,2 1 179 262,0 2 223 751,2 Pardubice 53,56 119 448 6,9 12,6 824 191,2 1 505 044,8 Brno 6 375 856 8,6 10,2 3 232 361,6 3 833 731,2 Olomouc 75-79 707 514 9,8 11,5 6 933 637,2 8 136 411,0 Ostrava 70-74 207 152 11,8 12,3 2 444 393,6 2 547 969,6 Jihlava 58,59 87 602 6,7 11,7 586 933,4 1 024 943,4 Sczczecin 7 965 257 4,3 22,6 4 150 605,1 21 814 808,2 Poznán 6 1 057 223 8,7 19,6 9 197 840,1 20 721 570,8 Wroclaw 5 730 781 9,2 16,0 6 723 185,2 11 692 496,0 Bydgoszcz 8 1 017 189 10,5 22,0 10 680 484,5 22 378 158,0 Katowice 4 1 134 506 13,1 13,7 14 862 028,6 15 542 732,2 Lódž 9 950 910 13,5 18,0 12 837 285,0 17 116 380,0 Krakow 30-34 650 610 14,9 13,4 9 694 089,0 8 718 174,0 Olsztyn 1 1 086 692 14,8 24,3 16 083 041,6 26 406 615,6 Warszawa 0 1 998 220 16,1 19,8 32 171 342,0 39 564 756,0 Rzeszow 35-39 266 967 18,8 13,7 5 018 979,6 3 657 447,9 Lublin 2 1 214 477 19,4 2,3 23 560 853,8 2 793 297,1 Bratislava 8,90 224 088 9,8 7,1 2 196 062,4 1 591 024,8 Trenčín 91,92,94,95
References [1] V.