The Numerical Modeling of a Two Phase Flow under the Gravitation and Centrifuge Driving Forces

Article Preview

Abstract:

An efficient numerical approximation for two phase flow in 1D is presented. Mathematicalmodel is based on two Richard’s type equations using Van Genuchten-Mualem (vG-M) model for capillarypressure-saturation and hydraulic permeability versus saturation of wetting liquid. The wettingand non-wetting liquids are incompressible and immiscible. The method is suitable for determinationof soil parameters (as a tunning parameters in vG-M model) via solution of inverse problem. Wettingliquid (-water) is injected into the sample originally saturated with non-wetting liquid (-oil) by gravitation,or centrifuge driving forces. In a series of experiments we discuss noninvasive (easy-to-measure)measurement scenarios which are satisfactory in a solution of inverse problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-66

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Bear, A. H. -D. Cheng, Modeling Groundwater flow and Contaminant Transport, Vol. 23, Springer, New York, (2010).

Google Scholar

[2] D. Constales, J. Kacur, Determination of soil parameters via the solution of inverse problems in infiltration, Computational Geosciences 5 (2001) 25-46.

Google Scholar

[3] D. Constales, J. Kacur, B. Malengier, A precise numerical scheme for contaminant transport in dual-well flow, Water Resources Research 39 (2003) 13 pages.

DOI: 10.1029/2003wr002411

Google Scholar

[4] J. Kacur, B. Malengier, P. Kison, A numerical model of transient flow under cenrifugation based on mass ballance, Transport in Porous Media 87 (2011) 793-813.

DOI: 10.1007/s11242-011-9719-8

Google Scholar

[5] J. Chen, J.W. Hopmans, M.E. Grismer, Prameter estimationof two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources 22 (1999) 479-493.

DOI: 10.1016/s0309-1708(98)00025-6

Google Scholar

[6] J. Kacur, B. Malengier, P. Kison, Using global characteristics of a centrifuge outflow experiment to determine unsaturated soil parameters, Mathematical Problems in Engineering (2011) 23 pages.

DOI: 10.1155/2011/163020

Google Scholar

[7] J. Šimunek, Šejna, M.T. van Genuchten, The HYDRUS-1D software package for simulating the onedimensional movement of water, heat, and multiple solutes in variably/saturated media, second ed., Int. Groundwater Model. Cent., Golden, Colorado, (1998).

Google Scholar

[8] J. Kacur, J. Minar, A benchmark solution for infiltration and adsorption of polluted water into the unsaturated-saturated porous media, Transport in Porous Media 97 (2013) 223-239.

DOI: 10.1007/s11242-012-0119-5

Google Scholar

[9] J. Kacur, J. Minar, H. Budacova, Determination of soil parameters based on mathematical modelling of centrifugation, International Journal of Mathematical Modelling and Numerical Optimisation 5 (2014) 153-170.

DOI: 10.1504/ijmmno.2014.063265

Google Scholar

[10] J. Simunek, J.R. Nimo, Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique, Water Resources Research 41 (2005) 9 pages.

DOI: 10.1029/2004wr003379

Google Scholar

[11] M. Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (1980) 892-898.

DOI: 10.2136/sssaj1980.03615995004400050002x

Google Scholar