[1]
S.K. Das, S.U. S Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Hoboken, New Jersey, (2007).
Google Scholar
[2]
W.J. Minkowycz, E.M. Sparrow, J.P. Abraham, Nanoparticle Heat Transfer and Fluid Flow, CRC Press, Hoboken, (2012).
Google Scholar
[3]
G. Donzelli, R. Cerbino, A. Vailati, Bistable Heat Transfer in a Nanofluid, Physics Review Letters 102 (2009) 1-4.
DOI: 10.1103/physrevlett.102.104503
Google Scholar
[4]
C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, International Journal of Heat and Mass Transfer 51 (2008) 5590-5597.
DOI: 10.1016/j.ijheatmasstransfer.2008.04.043
Google Scholar
[5]
P.C. Chiang, D. S. Hung, J. W. Wang, C. S. Ho, Y. D. Yao, Engineering water dispersible FePt nanoparticles for biomedical applications, IEEE Transaction on Magnetics 43 (2007) 2445-2447.
DOI: 10.1109/tmag.2007.894341
Google Scholar
[6]
S.U.S. Choi, Z.G. Zhang, P. Keblinski, Nanofluids, in: H.S. Nalwa (Ed. ), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, New York, 2004, vol. 6, p.757–773.
Google Scholar
[7]
J. Koo, C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks, International Journal Heat Mass Transfer 48 (2005) 2652–2661.
DOI: 10.1016/j.ijheatmasstransfer.2005.01.029
Google Scholar
[8]
S.P. Jang, J.H. Lee, K.S. Hwang, Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes, Applied Physics Letters 91 (2007) 243112.
DOI: 10.1063/1.2824393
Google Scholar
[9]
B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[10]
W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluids thermal conductivity and heat transfer enhancements, Heat Transfer Engineering 29 (2008) 32-460.
DOI: 10.1080/01457630701850851
Google Scholar
[11]
A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, International Journal of Thermophysics 30 (2009) 1213-1226.
DOI: 10.1007/s10765-009-0594-2
Google Scholar
[12]
M. Nazari, M. Ashouri, M. H. Kayhani, A. Tamayol, Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam, International Journal of Thermal Sciences 88 (2015) 33-39.
DOI: 10.1016/j.ijthermalsci.2014.08.013
Google Scholar
[13]
C. Pang, J.W. Lee, Y.T. Kang, Review on combined heat and mass transfer characteristics in nanofluids, International Journal of Thermal Sciences 87 (2015) 49-67.
DOI: 10.1016/j.ijthermalsci.2014.07.017
Google Scholar
[14]
S.M.S. Murshed, C.A.N. Castro (Eds. ), Nanofluids: Synthesis, Properties and Applications, Nova Science Pub., New York, (2014).
Google Scholar
[15]
L. Hendraningrat, S. Li, O. Torsæter, A coreflood investigation of nanofluid enhanced oil recovery, Journal of Petroleum Science and Engineering 111 (2013) 128-138.
DOI: 10.1016/j.petrol.2013.07.003
Google Scholar
[16]
D. Pavlidis, D. Lathouwers. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES, Nuclear Engineering and Design 264 (2013) 161-167.
DOI: 10.1016/j.nucengdes.2013.07.005
Google Scholar
[17]
P.L. Mills, D.J. Quiram, J.F. Ryley, Microreactor technology and process miniaturization for catalytic reactions - a perspective on recent developments and emerging technologies, Chemical Engineering Science 62 (2007) 6992-7010.
DOI: 10.1016/j.ces.2007.09.021
Google Scholar
[18]
P. Chandrasekaran, M. Cheralathan, V. Kumaresan, R. Velraj, Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system, Energy 7 (2014).
DOI: 10.1016/j.energy.2014.05.089
Google Scholar
[19]
M. Hajipour, A. M. Dehkordi, Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study, Experimental Thermal and Fluid Science 53 (2014) 49-56.
DOI: 10.1016/j.expthermflusci.2013.11.002
Google Scholar
[20]
A.V. Rosca, N.C. Rosca, T. Grosan, I. Pop, Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media, International Communications in Heat and Mass Transfer 39 (2012) 1080-1085.
DOI: 10.1016/j.icheatmasstransfer.2012.06.025
Google Scholar
[21]
O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow, International Journal of Heat and Mass Transfer 65 (2013) 514-532.
DOI: 10.1016/j.ijheatmasstransfer.2013.06.010
Google Scholar
[22]
R.A. Mahdi, H.A. Mohammed, K.M. Munisamy, N.H. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid, Renewable and Sustainable Energy Reviews 41 (2015) 715-734.
DOI: 10.1016/j.rser.2014.08.040
Google Scholar
[23]
Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat Mass Transfer 49 (2006) 240-250.
DOI: 10.1016/j.ijheatmasstransfer.2005.07.009
Google Scholar
[24]
P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlos, D.A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat Mass Transfer 52 (2009).
DOI: 10.1016/j.ijheatmasstransfer.2009.04.029
Google Scholar
[25]
H.S. Yang Hong, C.J. Choi, Study of the enhanced thermal conductivity of Fe-nanofluids, Journal of Applied Physics 97 (2005) 064311.
Google Scholar
[26]
P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluids, International Nano Letters 4 (2014) 109-120.
DOI: 10.1007/s40089-014-0126-3
Google Scholar
[27]
A.F. Miguel, Non-Darcy porous media flow in no-slip and slip regimes, Thermal Science 16 (2012)167-176.
DOI: 10.2298/tsci100929001m
Google Scholar
[28]
M.Y. Corapcioglu, Advances in Porous Media, volume 3, Elsevier Science & Technology, Amsterdam, (1996).
Google Scholar
[29]
A.F. Miguel, Contribution to flow characterisation through porous media, International Journal of Heat and Mass Transfer 43 (2000) 2267-2272.
DOI: 10.1016/s0017-9310(99)00306-3
Google Scholar
[30]
A.F. Miguel, A. Serrenho, On the experimental evaluation of the permeability in porous media using a gas flow method, Journal of Physics D 40 (2007) 6824-6828.
DOI: 10.1088/0022-3727/40/21/050
Google Scholar
[31]
A.F. Miguel, Airflow through porous screens: from theory to practical considerations, Energy and Buildings 28 (1998) 63-69.
DOI: 10.1016/s0378-7788(97)00065-0
Google Scholar
[32]
A.V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid saturated porous media, Transport in Porous Media 11 (1992) 219-241.
DOI: 10.1007/bf00614813
Google Scholar
[33]
A. Einstein, Eineneuebestimmung der moleküldimensionen, Annals of Physics 324 (1906) 289-306.
Google Scholar
[34]
H.C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal of Chemical Physics 20 (1952) 571.
Google Scholar
[35]
T.S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, Journal of Fluid Mechanics 51 (1972) 273–299.
DOI: 10.1017/s002211207200120x
Google Scholar
[36]
G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics 83 (1977) 97–117.
DOI: 10.1017/s0022112077001062
Google Scholar
[37]
A.L. Graham, On the viscosity of suspensions of solid spheres, Applied Scientific Research 37 (1981) 275–286.
Google Scholar
[38]
N.S. Cheng, A.W.K. Law, Exponential formula for computing effective viscosity, Powder Technology 129 (2003) 156–160.
DOI: 10.1016/s0032-5910(02)00274-7
Google Scholar
[39]
J. Avsec, M. Oblak, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. International Journal of Heat Mass Transfer 50 (2007) 4331–4341.
DOI: 10.1016/j.ijheatmasstransfer.2007.01.064
Google Scholar
[40]
J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, Journal of Applied Physics 103 (2008).
DOI: 10.1063/1.2902483
Google Scholar
[41]
S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids–a critical review, Applied Thermal Engineering. 28 (2008) 2109–2125.
DOI: 10.1016/j.applthermaleng.2008.01.005
Google Scholar
[42]
D.P. Kulkarni, D.K. Das, G.A. Chukwu, Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid), Journal for Nanoscience and Nanotechnology 6 (2006) 1150–1154.
DOI: 10.1166/jnn.2006.187
Google Scholar
[43]
S.M. Hosseini, A.R. Moghadassi, D.E. Henneke, A new dimensionless group model for determining the viscosity of nanofluids, Journal of Thermal Analysis and Calorimetry 100 (2010) 873–877.
DOI: 10.1007/s10973-010-0721-0
Google Scholar
[44]
W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering 29 (2008) 432–460.
DOI: 10.1080/01457630701850851
Google Scholar
[45]
P.K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Experimental Thermal and Fluid Science 32 (2007) 397-402.
DOI: 10.1016/j.expthermflusci.2007.05.001
Google Scholar
[46]
A. Bejan, I. Dincer, S. Lorente, A.F. Miguel, A.H. Reis, Porous and Complex Flow Structures in Modern Technologies, Springer, New York, (2004).
DOI: 10.1007/978-1-4757-4221-3
Google Scholar
[47]
D. Allori, G. Bartoli, A.F. Miguel, Fluid flow through macro-porous materials: friction coefficient and wind tunnel similitude criteria, International Journal of Fluid Mechanics Research 39 (2012) 136-148.
DOI: 10.1615/interjfluidmechres.v39.i2.40
Google Scholar
[48]
A. Serrenho, A.F. Miguel, Simulation and characterization of high porosity media for aerosol particle processing, Journal of Porous Media 12 (2009) 1129-1138.
DOI: 10.1615/jpormedia.v12.i12.10
Google Scholar
[49]
A.F. Miguel, A.H. Reis, M. Aydin, Aerosol particle deposition and distribution in a bifurcating ventilation duct, Journal of Hazardous Materials 116 (2004) 249-255.
DOI: 10.1016/j.jhazmat.2004.09.013
Google Scholar
[50]
A.F. Miguel, Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles, Journal of Aerosol Science 34 (2003) 783-799.
DOI: 10.1016/s0021-8502(03)00027-2
Google Scholar