Experimental Study on Nanofluid Flow in a Porous Cylinder: Viscosity, Permeability and Inertial Factor

Article Preview

Abstract:

Knowledge of fluid rheology and flow characteristics is important when studying nanofluid flow in porous media. In this study, an experimental investigation is presented to determine the nanofluid viscosity, the permeability and the inertial (non-Darcy) parameter of a porous cylinder made of several capillary tubes. The applicability of the Darcy-Forchheimer equation for power-law fluids to estimate pressure drop through the porous material is discussed. The occurrence of particle losses from the base fluid (deposition) is also verified.Experiments are completed in two steps. In the first step, physical properties of nanofluids consisting of deionized water and different volume concentrations of Al2O3 nanoparticles is measured. In the second step, Al2O3-deionized water nanofluids are pumped through a porous cylinder (porosity 0.249) to evaluate hydraulic and intrinsic permeabilities, and the inertial parameter. The effect of Al2O3 volume fraction on these flow properties is studied, and the void morphology changes within the porous cylinder via deposition of nanoparticles are analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-57

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Das, S.U. S Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Hoboken, New Jersey, (2007).

Google Scholar

[2] W.J. Minkowycz, E.M. Sparrow, J.P. Abraham, Nanoparticle Heat Transfer and Fluid Flow, CRC Press, Hoboken, (2012).

Google Scholar

[3] G. Donzelli, R. Cerbino, A. Vailati, Bistable Heat Transfer in a Nanofluid, Physics Review Letters 102 (2009) 1-4.

DOI: 10.1103/physrevlett.102.104503

Google Scholar

[4] C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, International Journal of Heat and Mass Transfer 51 (2008) 5590-5597.

DOI: 10.1016/j.ijheatmasstransfer.2008.04.043

Google Scholar

[5] P.C. Chiang, D. S. Hung, J. W. Wang, C. S. Ho, Y. D. Yao, Engineering water dispersible FePt nanoparticles for biomedical applications, IEEE Transaction on Magnetics 43 (2007) 2445-2447.

DOI: 10.1109/tmag.2007.894341

Google Scholar

[6] S.U.S. Choi, Z.G. Zhang, P. Keblinski, Nanofluids, in: H.S. Nalwa (Ed. ), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, New York, 2004, vol. 6, p.757–773.

Google Scholar

[7] J. Koo, C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks, International Journal Heat Mass Transfer 48 (2005) 2652–2661.

DOI: 10.1016/j.ijheatmasstransfer.2005.01.029

Google Scholar

[8] S.P. Jang, J.H. Lee, K.S. Hwang, Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes, Applied Physics Letters 91 (2007) 243112.

DOI: 10.1063/1.2824393

Google Scholar

[9] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[10] W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluids thermal conductivity and heat transfer enhancements, Heat Transfer Engineering 29 (2008) 32-460.

DOI: 10.1080/01457630701850851

Google Scholar

[11] A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, International Journal of Thermophysics 30 (2009) 1213-1226.

DOI: 10.1007/s10765-009-0594-2

Google Scholar

[12] M. Nazari, M. Ashouri, M. H. Kayhani, A. Tamayol, Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam, International Journal of Thermal Sciences 88 (2015) 33-39.

DOI: 10.1016/j.ijthermalsci.2014.08.013

Google Scholar

[13] C. Pang, J.W. Lee, Y.T. Kang, Review on combined heat and mass transfer characteristics in nanofluids, International Journal of Thermal Sciences 87 (2015) 49-67.

DOI: 10.1016/j.ijthermalsci.2014.07.017

Google Scholar

[14] S.M.S. Murshed, C.A.N. Castro (Eds. ), Nanofluids: Synthesis, Properties and Applications, Nova Science Pub., New York, (2014).

Google Scholar

[15] L. Hendraningrat, S. Li, O. Torsæter, A coreflood investigation of nanofluid enhanced oil recovery, Journal of Petroleum Science and Engineering 111 (2013) 128-138.

DOI: 10.1016/j.petrol.2013.07.003

Google Scholar

[16] D. Pavlidis, D. Lathouwers. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES, Nuclear Engineering and Design 264 (2013) 161-167.

DOI: 10.1016/j.nucengdes.2013.07.005

Google Scholar

[17] P.L. Mills, D.J. Quiram, J.F. Ryley, Microreactor technology and process miniaturization for catalytic reactions - a perspective on recent developments and emerging technologies, Chemical Engineering Science 62 (2007) 6992-7010.

DOI: 10.1016/j.ces.2007.09.021

Google Scholar

[18] P. Chandrasekaran, M. Cheralathan, V. Kumaresan, R. Velraj, Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system, Energy 7 (2014).

DOI: 10.1016/j.energy.2014.05.089

Google Scholar

[19] M. Hajipour, A. M. Dehkordi, Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study, Experimental Thermal and Fluid Science 53 (2014) 49-56.

DOI: 10.1016/j.expthermflusci.2013.11.002

Google Scholar

[20] A.V. Rosca, N.C. Rosca, T. Grosan, I. Pop, Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media, International Communications in Heat and Mass Transfer 39 (2012) 1080-1085.

DOI: 10.1016/j.icheatmasstransfer.2012.06.025

Google Scholar

[21] O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow, International Journal of Heat and Mass Transfer 65 (2013) 514-532.

DOI: 10.1016/j.ijheatmasstransfer.2013.06.010

Google Scholar

[22] R.A. Mahdi, H.A. Mohammed, K.M. Munisamy, N.H. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid, Renewable and Sustainable Energy Reviews 41 (2015) 715-734.

DOI: 10.1016/j.rser.2014.08.040

Google Scholar

[23] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat Mass Transfer 49 (2006) 240-250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[24] P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlos, D.A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat Mass Transfer 52 (2009).

DOI: 10.1016/j.ijheatmasstransfer.2009.04.029

Google Scholar

[25] H.S. Yang Hong, C.J. Choi, Study of the enhanced thermal conductivity of Fe-nanofluids, Journal of Applied Physics 97 (2005) 064311.

Google Scholar

[26] P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluids, International Nano Letters 4 (2014) 109-120.

DOI: 10.1007/s40089-014-0126-3

Google Scholar

[27] A.F. Miguel, Non-Darcy porous media flow in no-slip and slip regimes, Thermal Science 16 (2012)167-176.

DOI: 10.2298/tsci100929001m

Google Scholar

[28] M.Y. Corapcioglu, Advances in Porous Media, volume 3, Elsevier Science & Technology, Amsterdam, (1996).

Google Scholar

[29] A.F. Miguel, Contribution to flow characterisation through porous media, International Journal of Heat and Mass Transfer 43 (2000) 2267-2272.

DOI: 10.1016/s0017-9310(99)00306-3

Google Scholar

[30] A.F. Miguel, A. Serrenho, On the experimental evaluation of the permeability in porous media using a gas flow method, Journal of Physics D 40 (2007) 6824-6828.

DOI: 10.1088/0022-3727/40/21/050

Google Scholar

[31] A.F. Miguel, Airflow through porous screens: from theory to practical considerations, Energy and Buildings 28 (1998) 63-69.

DOI: 10.1016/s0378-7788(97)00065-0

Google Scholar

[32] A.V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid saturated porous media, Transport in Porous Media 11 (1992) 219-241.

DOI: 10.1007/bf00614813

Google Scholar

[33] A. Einstein, Eineneuebestimmung der moleküldimensionen, Annals of Physics 324 (1906) 289-306.

Google Scholar

[34] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal of Chemical Physics 20 (1952) 571.

Google Scholar

[35] T.S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, Journal of Fluid Mechanics 51 (1972) 273–299.

DOI: 10.1017/s002211207200120x

Google Scholar

[36] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics 83 (1977) 97–117.

DOI: 10.1017/s0022112077001062

Google Scholar

[37] A.L. Graham, On the viscosity of suspensions of solid spheres, Applied Scientific Research 37 (1981) 275–286.

Google Scholar

[38] N.S. Cheng, A.W.K. Law, Exponential formula for computing effective viscosity, Powder Technology 129 (2003) 156–160.

DOI: 10.1016/s0032-5910(02)00274-7

Google Scholar

[39] J. Avsec, M. Oblak, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. International Journal of Heat Mass Transfer 50 (2007) 4331–4341.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.064

Google Scholar

[40] J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, Journal of Applied Physics 103 (2008).

DOI: 10.1063/1.2902483

Google Scholar

[41] S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids–a critical review, Applied Thermal Engineering. 28 (2008) 2109–2125.

DOI: 10.1016/j.applthermaleng.2008.01.005

Google Scholar

[42] D.P. Kulkarni, D.K. Das, G.A. Chukwu, Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid), Journal for Nanoscience and Nanotechnology  6 (2006) 1150–1154.

DOI: 10.1166/jnn.2006.187

Google Scholar

[43] S.M. Hosseini, A.R. Moghadassi, D.E. Henneke, A new dimensionless group model for determining the viscosity of nanofluids, Journal of Thermal Analysis and Calorimetry 100 (2010) 873–877.

DOI: 10.1007/s10973-010-0721-0

Google Scholar

[44] W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering 29 (2008) 432–460.

DOI: 10.1080/01457630701850851

Google Scholar

[45] P.K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Experimental Thermal and Fluid Science 32 (2007) 397-402.

DOI: 10.1016/j.expthermflusci.2007.05.001

Google Scholar

[46] A. Bejan, I. Dincer, S. Lorente, A.F. Miguel, A.H. Reis, Porous and Complex Flow Structures in Modern Technologies, Springer, New York, (2004).

DOI: 10.1007/978-1-4757-4221-3

Google Scholar

[47] D. Allori, G. Bartoli, A.F. Miguel, Fluid flow through macro-porous materials: friction coefficient and wind tunnel similitude criteria, International Journal of Fluid Mechanics Research 39 (2012) 136-148.

DOI: 10.1615/interjfluidmechres.v39.i2.40

Google Scholar

[48] A. Serrenho, A.F. Miguel, Simulation and characterization of high porosity media for aerosol particle processing, Journal of Porous Media 12 (2009) 1129-1138.

DOI: 10.1615/jpormedia.v12.i12.10

Google Scholar

[49] A.F. Miguel, A.H. Reis, M. Aydin, Aerosol particle deposition and distribution in a bifurcating ventilation duct, Journal of Hazardous Materials 116 (2004) 249-255.

DOI: 10.1016/j.jhazmat.2004.09.013

Google Scholar

[50] A.F. Miguel, Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles, Journal of Aerosol Science 34 (2003) 783-799.

DOI: 10.1016/s0021-8502(03)00027-2

Google Scholar