Characterization of Synonymous Codon Usage Bias in the Riemerella Anatipestifer Major Facilitator Superfamily Mfs_1 Gene Encoded 492 Amino Acids Protein

Article Preview

Abstract:

Objective: The aim was to identify the codon usage bias between the newly identified Riemerella anatipestifer (RA) major facilitator superfamily mfs_1 gene (GenBank accession No.CP003388.1) and other reference bacteriums. Methods: A comparative analysis of the codon usage bias of the 18 bacteriums was performed by using the CodonW 1.4 program and CUSP (create a codon usage table) program of EMBOSS (The European Molecular Biology Open Software Suite). Results: The results showed obvious differences of the synonymous codon usage bias in the 18 bacteriums indicated by the Codon Adaptation Index (CAI), effective number of codons (ENc), and the value of G+C content at the 3rd codon position. The codon usage pattern of the major facilitator superfamily mfs_1 gene was phylogenetically conserved and similar to that of the major facilitator superfamily mfs_1 gene of the Elizabethkingia anophelis Ag1 Contig17, with a strong bias towards the codons with A and T at the 3rd codon position. A cluster analysis of codon usage pattern of the RA major facilitator superfamily mfs_1 gene with other reference bacteriums demonstrated that the codon usage bias of the major facilitator superfamily mfs_1 genes of the 18 bacteriums had a very close relation with their gene function. The ENc-plot revealed that the genetic heterogeneity in the RA major facilitator superfamily mfs_1 gene and the 18 reference bacteriums were constrained by G+C content, while gene length exerted relatively weaker influences. In addition, comparisons of the codon preferences in the major facilitator superfamily mfs_1 gene of RA with those of Escherichia coli, yeast and humans revealed that there were 36 codons showing distinct usage differences between the RA and E. coli, and 37 between the RA and humans, but only 28 between the RA and yeast. Therefore, the yeast system may be more suitable for the expression of the RA major facilitator superfamily mfs_1 gene. Conclusion: Together, these results may improve our understanding of the evolution, pathogenesis and functional studies of RA and possibly contribute significantly to the area of other bacteriums.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 641-642)

Pages:

675-683

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dittmar KA, Goodenbour JM, Pan J: PLoS Genet. Vol. 2107-2115(2006), p.2.

Google Scholar

[2] Lloyd AT, Sharp PM: Nucleic Acids Res. Vol. 5289-5295(1992), p.20.

Google Scholar

[3] Xie T, Ding D, Tao X, Dafu D: FEBS Lett. Vol. 93-96(1998), p.434.

Google Scholar

[4] Chiapello H, Lisacek F, Caboche M: Gene. Vol. 1-38(1998), p.209.

Google Scholar

[5] Adams MJ, Antoniw JF: Arch Virol. 149(2003)113-135.

Google Scholar

[6] Zhou H, Wang H, Huang LF: Arch Virol. Vol. 1591-1605(2005), p.150.

Google Scholar

[7] Levin DB, Whittome B: J Gen Virol. Vol. 2313-2325(2000), p.81.

Google Scholar

[8] Gupta SK, Ghosh TC: Gene. Vol. 63-70(2001), p.273.

Google Scholar

[9] Onofrio G, Ghosh TC, Bernardi G: Gene. Vol. 179-187(2002), p.300.

Google Scholar

[10] Gu W, Zhou T, Ma J, Sun X, Lu Z: Biosystems. Vol. 89-97(2004), p.73.

Google Scholar

[11] Wang Meng, Zhang Jie, Zhou Jian-hua, Chen Hao-tai, Ma Li-na, Ding Yaozhong, Liu Wen-qian, Liu Yong-sheng: Arch Virol. Vol. 153-160(2010), p.156.

Google Scholar

[12] Romero H, Zavala A, Musto H: Gene. Vol. 307-311(2000), p.242.

Google Scholar

[13] Van der Linden MG, de Farias ST: Extremophiles. Vol. 479-481(2006), p.10.

Google Scholar

[14] R. Grantham, C. Gautier, M. Gouy, M. Jacobzone, R. Mercier: Nucleic Acids Res. Vol. 213(1981), p.9.

DOI: 10.1093/nar/9.1.213-b

Google Scholar

[15] Gouy M, Gautier C: Nucleic Acids Res. Vol. 7055-7074(1982), p.10.

Google Scholar

[16] Roymondal U, Shibsankar D, Satyabrata S: Genome DNA Res. Vol. 13-30(2009), p.16.

Google Scholar

[17] Lobry JR, Gautier C: Nucleic Acids Res. Vol. 3174-3180(1994), p.22.

Google Scholar

[18] Eyre-Walker A: Mol Biol Evol. Vol. 864-872(1996), p.13.

Google Scholar

[19] Bulmer M: Genetics. Vol. 897-907(1991), p.129.

Google Scholar

[20] Ikemura T: Mol Biol Evol. Vol. 13-34(1985), p.2.

Google Scholar

[21] Hassan S, Mahalingam V, Kumar V: Advances in Bioinformatics. Vol. 316936-316947(2009), p.2009.

Google Scholar

[22] R. Grantham, C. Gautier, M. Gouy, R. Mercier,A. Pavé: Nucleic Acids Res. Vol. 197(1980), p.8.

DOI: 10.1093/nar/8.1.197-c

Google Scholar

[23] Stenico M, Andrew T. L, Paul M. S: Nucleic Acids Res. Vol. 2437-2446(1994), p.22.

Google Scholar

[24] Gupta SK, Bhattacharyya TK, Ghosh TC: Gupta SK J Biomol Struct Dyn. Vol. 527-536(2004), p.21.

Google Scholar

[25] H. Chiapello, F. Lisacek, M. Caboche, A. He´naut: Gene. Vol. 1–38(1998), p.209.

Google Scholar

[26] R.J. Epstein, K. Lin, T.W. Tan: Gene. Vol. 291-298(2000), p.245.

Google Scholar

[27] J. Ma, T. Zhou, W. Gu, X. Sun, Z. Lu: Biosystems. Vol. 199–207(2002), p.65.

Google Scholar

[28] Sandhu TS: Diseases of Poultry. Vol. 758–764(2008), p.12.

Google Scholar

[29] Pathanasophon P, Phuektes P, Tanticharoenyos T, Narongsak W, Sawada T: Avian Pathol. Vol. 267–270(2002), p.31.

DOI: 10.1080/03079450220136576

Google Scholar

[30] Bisgaard M: Avian Pathol. Vol. 341–350(1982), p.11.

Google Scholar

[31] Cheng AC, Wang MS and Chen XY: Chinese Journal of Veterinary Science. Vol. 1005-4545(2003), p.23.

Google Scholar

[32] Tsai HJ, Liu YT, Tseng CS, Pan MJ: Avian Pathol. Vol. 55–64(2005), p.34.

Google Scholar

[33] Hu Q, Han X, Zhou X, Ding C, Zhu Y: Vet Microbiol. Vol. 278–283(2011), p.150.

Google Scholar

[34] Xiaojia Wang, DeKang Zhu, MingShu Wang, AnChun Cheng, RenYong Jia, Yi Zhou, Zhengli Chen, QiHui Luo, Fei Liu, Yi Wang and XiaoYue Chen: Journal of Bacteriology. Vol. 3270-3271(2012), p.194.

DOI: 10.1637/9333-917210-digest.1

Google Scholar

[35] Lu H, Zhao WM, Zheng Y, Wang H, Qi M, Yu XP: Acta Biochim Biophys Sin (Shanghai). Vol. 1-10(2005), p.37.

Google Scholar

[36] Sakai H, Washio T, Saito R: Gene. Vol. 1-5(2001), p.276.

Google Scholar

[37] Lobry JR, Gautier C: Nucleic Acids Res. Vol. 3174-3180(1994), p.22.

Google Scholar

[38] J. A. Novembre: Mol Biol Evol. Vol. 390-1394(2002), p.19.

Google Scholar

[39] Y.Y. Hsiao, C.H. Lin, J.K. Liu, T.Y. Wong , J. Kuo: Comparative and Functional Genomics. Vol. 138538-138546(2007), p.3.

Google Scholar

[40] H. S. Najafabadi, J. Lehmann, M. Omidi: Gene. Vol. 150-155(2007), p.387.

Google Scholar

[41] P.M. Sharp W.H. Li: Nucleic. Acids. Res. Vol. 1281-1295(1987), p.15.

Google Scholar