Bioinformatics Analysis of UL39 Gene from Duck Plague Virus

Article Preview

Abstract:

The structures and characteristics of the large subunit of ribonucleotide reductase (R1), encoded by UL39 gene from duck plague virus (DPV) were analyzed and predicted by using a series of free bioinformatics software packages and bioinformatics tools. The DPV UL39 gene has a base composition of 681 adenine (27.99%), 503 cytosine (20.67%), 593 guanine (24.37%) and 656 thymine (26.96%). The online analysis of the physico-chemical properties demonstrates that the protein has 40 potential phosphorylation sites and 4 N-glycosylation sites when the threshold of prediction score is above 0.5; without the signal peptide and the transmembrance region. The phylogenetic tree proved that DPV R1 protein had a close evolutionary relationship with the Mardivirus genus of the Alphaherpesviruses. In conclusion, all those results will provide some valuable information for the further research of UL39 gene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 641-642)

Pages:

645-653

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.C. Burgess, J. Ossa and T.M. Yuill: Avian Dis. Vol. 23 (1979), pp.940-949.

Google Scholar

[2] A.J. Davison, R . Eberle, B. Ehlers, G.S. Hayward, D.J. McGeoch, A.C. Minson, P.E. Pellett, B. Roizman, M.J. Studdert and E. Thiry: Arch. Virolo. Vol. 154 (2009), pp.171-177.

DOI: 10.1007/s00705-008-0278-4

Google Scholar

[3] C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses (Academic Press, London 2005).

Google Scholar

[4] K.A. Converse and G.A. Kidd: J. Wildlife Dis. Vol. 37 (2001), p.347–357.

Google Scholar

[5] R. Gardner, J. Wilkerson, J.C. Johnson: Intervirology Vol. 36 (1993), pp.99-112.

Google Scholar

[6] C.J. Shen, A.C. Cheng, M.S. Wang, Y.F. Guo, L.C. Zhao, M. Wen, W. Xie, H.Y. Xin and D.K. Zhu: Arch. Virolo. Vol. 154 (2009), pp.1061-1069.

Google Scholar

[7] B. Lian, C. Xu, A.C. Cheng, M.S. Wang, D.K. Zhu, Q.H. Luo, R.Y. Jia, F.J. Bi , Z.L. Chen, Y. Zhou, Z.X. Yang and X.Y. Chen: Virol. J. Vol. 349 (2011), pp.1-11.

Google Scholar

[8] L.C. Zhao, A.C. Cheng, M.S. Wang, G.P. Yuan, R.Y. Jia, D.C. Zhou, X.F. Qi, H. Ge, and T. Sun: Avian Dis. Vol. 52 (2008), pp.324-331.

Google Scholar

[9] J. Conner, H. Marsden and J.B. Clements: Rev. Med. Virol. Vol. 4 (1994), pp.25-34.

Google Scholar

[10] J.M. Cameron, I. McDougall, H.S. Marsden, V.G. Preston, D.M. Ryan and J.H. Subak-Sharpe: J. Gen. Virol. Vol. 69 (1988), pp.2607-2612.

Google Scholar

[11] J. Furlong, J. Conner, J. McLauchlan, H. Lankinen, C. Galt, H.S. Marsden and J.B. Clements: Virology Vol. 182 (1991), pp.846-851.

DOI: 10.1016/0042-6822(91)90627-n

Google Scholar

[12] P. Nordlund and P. Reichard: Annual Review of Biochemistry Vol. 75 (2006), 681-706.

Google Scholar

[13] C.K. Mathews: The FASEB Journal Vol. 20 (2006), pp.1300-1314.

Google Scholar

[14] E. Torrents, M. Sahlin and B.M. Sjoberg: The ribonucleotide reductase family-genetics and genomics (NovaScience Publishers, New York 2008).

Google Scholar

[15] T. Radivoyevitch: BMC Systems Biology Vol. 15 (2008), pp.1-13.

Google Scholar

[16] A.C. Cheng, M.S. Wang, M. Wen, W.G. Zhou, Y.F. Guo, R.Y. Jia, C. Xu, G.P. Yuan, Y.C. Liu: High Technol. Lett. Vol. 16 (2006), pp.948-953.

Google Scholar

[17] J. Shao, B. Zhou, C. Bernard and Y. Yen: Current Cancer Drug Targets Vol. 6 (2006), pp.409-431.

Google Scholar

[18] J. Herrick and B. Sclavi: Mol. Microbiol. Vol. 63 (2007), pp.22-34.

Google Scholar

[19] G. Delhon, M.P. Moraes, Z. Lu, C.L. Afonso, E.F. Flores, R. Weiblen, G.F. Kutish and D.L. Rock: Virology Vol. 77 (2003), pp.10339-10347.

DOI: 10.1128/jvi.77.19.10339-10347.2003

Google Scholar

[20] S.D. Tyler, G.A. Peters and A. Severini: Virology Vol. 331 (2005), pp.429-440.

Google Scholar

[21] V.G. Preston, J.W. Palfreyman and B.M. Dutia: J. Gen. Virol. Vol. 65 (1984), pp.1457-1466.

Google Scholar

[22] L.M. Iakoucheva, P. Radivojac1, C.J. Brown, Tr.O. Connor, J.G. Sikes, Z. Obradovic1 and A.K. Dunker: Nucleic Acids Res. Vol. 32 (2004), pp.1037-1049.

Google Scholar

[23] N. Blom, S. Gammeltoft and S. Brunak: J. Mo. Biol. Vol. 294 (1999), pp.1351-1362.

Google Scholar

[24] H.R. Griffiths: Autoimmun. Rev. Vol. 7 (2008), pp.544-549.

Google Scholar

[25] S.M. Chi: Biochem. Bioph. Res. Co. Vol. 399 (2010), pp.402-405.

Google Scholar

[26] T. Sun, A.C. Cheng, M.S. Wang, Y.F. Guo, R.Y. Jia and C.J. Shen: Veterinary Science in China Vol. 38 (2008), pp.939-945.

Google Scholar

[27] C. Xu, X.R. Li, H.Y. Xin, B. Lian, A.C. Cheng, M.S. Wang, D.K. Zhu, R.Y. Jia, Q.H. Luo and X.Y. Chen: Chinese Veterinary Science Vol. 38 (2008), pp.1038-1044.

Google Scholar

[28] D.J. Barlow, M.S. Edwards and J.M. Thornton: Nature Vol. 322 (1986), pp.747-748.

Google Scholar

[29] H Chang, A.C. Cheng, M.S. Wang, Y.F. Guo, W. Xie and K.P. Lou: Arch. Virol. Vol. 154 (2009), pp.163-165.

Google Scholar

[30] M.S. Cai. A.C. Cheng, M.S. Wang, L.C. Zhao, D.K. Zhu, Q.H. Luo, F. Liu and X.Y. Chen: Intervirology Vol. 52 (2009), pp.266-278.

Google Scholar

[31] R.Y. Jia, A.C. Cheng, M.S. Wang, H.Y. Xin, Y.F. Guo, D.K. Zhu, X.F. Qi, L.C. Zhao, H. Ge and X.Y. Chen: Virus Genes Vol. 38 (2008), pp.96-103.

Google Scholar

[32] L.C. Zhao, A.C. Cheng, M.S. Wang, G.P. Yuan and M.S. Cai: Prog. Nat. Sci. Vol. 18 (2008), p.1069–1076.

Google Scholar