Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: January 2005
Authors: Tomiharu Matsushita, Olga Verezub, Kusuhiro Mukai, György Kaptay
Penetration dynamics of solid particles into liquids
High-speed experimental results and modelling
O.Verezub
1, G.Kaptay
1, T.Matsushita
2
, K.Mukai2
1
University of Miskolc, Department of Physical Chemistry, Hungary-3515, Miskolc
2
Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Japan
Keywords: solid particles, liquids, penetration, contact angle, Weber number
Abstract.
Measured critical impact velocity intervals of particles (cm/s) into liquids CKI, w% N 3 mm P 3 mm P 4 mm P 5 mm P 7 mm P 8 mm T 3 mm A 3 mm 0 45±15 54±3 >0 >0 >0 0* 32±2 0 15.9 42±1 50±1 42±1 30±1 >0 >0 32±2 0 26 45±1 54±1 40±5 26±1 >0 >0 21±1 0 44 64±2 61±3 > 0 > 0 >0 >0 39±2 0 58 60±6 56±1 52,5±1 42±2 35±3 30±7 43±2 0 * this value depends on the orientation of the particle - see text The only exception is the 8 mm polymer particle on the surface of pure water.
Fig.1.
[11] V.V.Maslov, D.Yu.Paderno, A.D.Panasyuk: Powder Metallurgy and Metal Ceramics, 39 (2000) 474-479
Rev., 37 (1992) 1-13
Measured critical impact velocity intervals of particles (cm/s) into liquids CKI, w% N 3 mm P 3 mm P 4 mm P 5 mm P 7 mm P 8 mm T 3 mm A 3 mm 0 45±15 54±3 >0 >0 >0 0* 32±2 0 15.9 42±1 50±1 42±1 30±1 >0 >0 32±2 0 26 45±1 54±1 40±5 26±1 >0 >0 21±1 0 44 64±2 61±3 > 0 > 0 >0 >0 39±2 0 58 60±6 56±1 52,5±1 42±2 35±3 30±7 43±2 0 * this value depends on the orientation of the particle - see text The only exception is the 8 mm polymer particle on the surface of pure water.
Fig.1.
[11] V.V.Maslov, D.Yu.Paderno, A.D.Panasyuk: Powder Metallurgy and Metal Ceramics, 39 (2000) 474-479
Rev., 37 (1992) 1-13
Online since: April 2010
Authors: Alexander S. Chaus, Matej Beznák
Table 1.
Alloying scheme (addition in wt % Ti/Nb/V/B) and carbide phase composition of steels Treatment: As-cast Annealed Heat treated Steel 1 (2/1/1/0) TiC>VC>>M6C M6C>TiC>VC VC>NbC>>M6C≥TiC Steel 2 (1/3/1/0) M6C>>VC≈TiC VC>M6C>TiC>NbC Steel 3 (2/1/2/0) TiC>VC VC≥ M6C>TiC VC>M6C>TiC, NbC* Steel 4 (1/2/3/0) VC≈TiC, NbC* VC>TiC>>NbC Steel 5 (3/2/2/0.5) TiC>WC TiC>NbC>WC Steel 6 (1/2/3/0.5) TiC TiC>VC TiC>VC>Fe7W6>>FeTi Note: (1) M6C = Fe3(W,Mo)3C; (2) * - Traces.
Figure 1.
References [1] A.S.
A Vol. 479 (2008), p. 253
Alloying scheme (addition in wt % Ti/Nb/V/B) and carbide phase composition of steels Treatment: As-cast Annealed Heat treated Steel 1 (2/1/1/0) TiC>VC>>M6C M6C>TiC>VC VC>NbC>>M6C≥TiC Steel 2 (1/3/1/0) M6C>>VC≈TiC VC>M6C>TiC>NbC Steel 3 (2/1/2/0) TiC>VC VC≥ M6C>TiC VC>M6C>TiC, NbC* Steel 4 (1/2/3/0) VC≈TiC, NbC* VC>TiC>>NbC Steel 5 (3/2/2/0.5) TiC>WC TiC>NbC>WC Steel 6 (1/2/3/0.5) TiC TiC>VC TiC>VC>Fe7W6>>FeTi Note: (1) M6C = Fe3(W,Mo)3C; (2) * - Traces.
Figure 1.
References [1] A.S.
A Vol. 479 (2008), p. 253
Online since: January 2010
Authors: Ileao L. Ferreira, D.J. Moutinho, L.G. Gomes, O.L. Rocha, Pedro R. Goulart, Amauri Garcia
Ferreira 1,a
, D.J.
(A) (B) Fig. 1.
These data are summarized in Table 1.
Table 1.
References [1] J.
(A) (B) Fig. 1.
These data are summarized in Table 1.
Table 1.
References [1] J.
Online since: December 2016
Authors: Andrei Shishkin, Viktors Mironovs, Austris Laksa, Viktoria Shidlovska, Zane Timermane, Jurijs Ozolins, Hakim Aguedal
Each 1-1.5 min a sample of granules was taken for clay coating thickness test.
a) b) Fig. 1.
Table 1.
References [1] M.G.N.
Sci., 3 (1998) 474–479
a) b) Fig. 1.
Table 1.
References [1] M.G.N.
Sci., 3 (1998) 474–479
Online since: August 2014
Authors: Wei Ye Chen, Gui Hong Geng, Cheng Lu Zou
It is the theoretical foundation for future development of aluminium-lithium alloy. [8]
Table 1 The characteristics and information of various aluminium-lithium alloys [4-6]
Peculiarity
Alloy
Composition
Origins
Time
high strength
8091
2090
weldalite-049
Al-2.6Li-1.9Cu-0.8Mn-0.12Zr
Al-2.2Li-2.7Cu-0.12Zr
Al-1.2Li-3.4Cu-0.5Mg-0.14Zr-0.4Ag
UK
US
US
1984
1984
1989
weld ability
weldalite-049
1420
Al-1.2Li-3.4Cu-0.5Mg-0.14Zr-0.4Ag
Al-2.0Li-5.0Mg-0.5Mn
US
USSR
1989
1965
corrosion resistance
01420
8090
2091
AL-2.0Li-4.8Mg-0.012Zr-0.1Fe
Al-2.4Li-1.3Cu-1.2Mg-0.12Zr
Al-2.0Li-2.3Cu-1.5Mg-0.12Zr
USSR
UK
FR
1967
1984
1984
thermal stability
2090
8090
Al-2.2Li-2.7Cu-0.12Zr
Al-2.4Li-1.3Cu-1.2Mg-0.12Zr
US
UK
1984
1984
plasticity
weldalite-049
2090
8090
Al-1.2Li-3.4Cu-0.5Mg-0.14Zr-0.4Ag
Al-2.2Li-2.7Cu-0.12Zr
Al-2.4Li-1.3Cu-1.2Mg-0.12Zr
US
US
UK
1989
1984
1984
In 1942, Alcoa corporation in United States declared a new generation of aluminium-lithium alloy-2020(Al
-4.5Cu-1.0Li-0.8Mn-0.15Cd).
The reasons are as followings: [12] (1) Lithium has very low density and low melting point with high surface activity. 1% lithium addition can improve the surface tension of 60%
When aluminum alloy contains 1% lithium, about l / 20 the lithium atoms locate inside of the melt and 1/2 lithium atoms locate in the phase boundary.
[13] Yanbo Deng, Rongtao Zhao, Ji Feng, Lingjun Kong, Zhengqian Han, Shihai Li: Rapid solidification technology in the application of aluminum alloy, SCIENCE & TECHNOLOGY INFORMATION, 2012, 25, 476-479
-4.5Cu-1.0Li-0.8Mn-0.15Cd).
The reasons are as followings: [12] (1) Lithium has very low density and low melting point with high surface activity. 1% lithium addition can improve the surface tension of 60%
When aluminum alloy contains 1% lithium, about l / 20 the lithium atoms locate inside of the melt and 1/2 lithium atoms locate in the phase boundary.
[13] Yanbo Deng, Rongtao Zhao, Ji Feng, Lingjun Kong, Zhengqian Han, Shihai Li: Rapid solidification technology in the application of aluminum alloy, SCIENCE & TECHNOLOGY INFORMATION, 2012, 25, 476-479
Online since: April 2008
Authors: Xiao Yan Huang, De Qun Li, Qiang Xu
Gate Location Optimization in Injection Molding Based on Empirical
Search Method
Xiao-Yan Huang
1,2, hxyxwj@126.com
, De-Qun Li
1,
ldq@hust.edu.cn ,
and Qiang Xu
3,xqqx2003@126.com
1.
Fig. 1.
Table 1.
REFERENCES [1] A.Gokce, K.T.Hsiao, S.G.Advani.
Eng. 2004,43(3):649-659 [5] Xia Z, Mallick, P,K,Control of dimensional variability in injection molded plastic parts, SPE Annual Technical Conference, ANTEC,1997,18(1):472-479 Project: Supported by National Natural Science Foundation of China(20490224) Supported by State Key Laboratory of Material Processing and Die & Mould Technology (07-04)
Fig. 1.
Table 1.
REFERENCES [1] A.Gokce, K.T.Hsiao, S.G.Advani.
Eng. 2004,43(3):649-659 [5] Xia Z, Mallick, P,K,Control of dimensional variability in injection molded plastic parts, SPE Annual Technical Conference, ANTEC,1997,18(1):472-479 Project: Supported by National Natural Science Foundation of China(20490224) Supported by State Key Laboratory of Material Processing and Die & Mould Technology (07-04)
Online since: February 2019
Authors: Andrii G. Kostryzhev, Turbadrakh Chuluunbat, Olexandra Marenych
Table 1.
Testing condition A B C D Strain rate 0.3x10-3 s-1 0.3x10-3 s-1 0.9x10-3 s-1 0.9x10-3 s-1 Specimen type Plain SENT Plain SENT AE monitoring.
Fig. 1.
References [1] C.U.
Tieu, Investigation of X70 line pipe steel fracture during single edge-notched tensile testing using acoustic emission monitoring, Materials Sceince and Engineering A, 640 (2015) 471-479
Testing condition A B C D Strain rate 0.3x10-3 s-1 0.3x10-3 s-1 0.9x10-3 s-1 0.9x10-3 s-1 Specimen type Plain SENT Plain SENT AE monitoring.
Fig. 1.
References [1] C.U.
Tieu, Investigation of X70 line pipe steel fracture during single edge-notched tensile testing using acoustic emission monitoring, Materials Sceince and Engineering A, 640 (2015) 471-479
Online since: April 2009
Authors: Paul Heitjans, Martin Wilkening, W. Iwaniak, J. Fritzsche, M. Zukalová, R. Winter
Heitjans
1,a 1,2 3 4
,1,b 1,c
1Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover,
Callinstr. 3a, 30167 Hannover (Germany)
wilkening pci.uni-hannover.de,
2
3 4
b c
German Institute of Rubber Technology (DIK), Eupener Str. 33, 30519 Hannover (Germany)
J.
The ball-to-powder weight ratio used was about 2:1.
This10 -72 4 6 810 -62 4 6 810 -52 4 6 810 -4 σ' / S · cm-1 102 103 104 105 frequency / Hz 423 K 408 K 392 K ball-milled (2 h) 479 K 459 K 443 K -10 -8 -6 -4 -2 0 log10 (σdcT · (SK)-1 cm) 3.5 3.0 2.5 2.0 1.5 1000/T /K-1 ball milled (2h) sg2 sg1 microcrystalline 0.70(1) eV 0.84(1) eV a) b) Fig. 2: a) Impedance spectra of nanocrystalline Li4Ti5O12 prepared by high-energy ball milling of the microcrystalline source material in a shaker mill for 2 h. b) Temperature dependence of the dc conductivity of ball milled Li4Ti5O12 in comparison with that of nanocrystalline Li4Ti5O12 prepared chemically using a sol-gel (sg) method.
References [1] P.
Hall, Acta Metall. 1, 22 (1953)
The ball-to-powder weight ratio used was about 2:1.
This10 -72 4 6 810 -62 4 6 810 -52 4 6 810 -4 σ' / S · cm-1 102 103 104 105 frequency / Hz 423 K 408 K 392 K ball-milled (2 h) 479 K 459 K 443 K -10 -8 -6 -4 -2 0 log10 (σdcT · (SK)-1 cm) 3.5 3.0 2.5 2.0 1.5 1000/T /K-1 ball milled (2h) sg2 sg1 microcrystalline 0.70(1) eV 0.84(1) eV a) b) Fig. 2: a) Impedance spectra of nanocrystalline Li4Ti5O12 prepared by high-energy ball milling of the microcrystalline source material in a shaker mill for 2 h. b) Temperature dependence of the dc conductivity of ball milled Li4Ti5O12 in comparison with that of nanocrystalline Li4Ti5O12 prepared chemically using a sol-gel (sg) method.
References [1] P.
Hall, Acta Metall. 1, 22 (1953)
Online since: September 2006
Authors: Robert C. Wimpory, Anastasius Youtsos, L.K. Keppas, N.K. Anifantis, Dimitrios Elias Katsareas
To start the 1
st weld
bead increment analysis, the elements corresponding to the 1
st bead increment (Fig. 5b) are
activated.
Figure 1: Specimen dimensions.
Table 1: Welding parameters.
The welding conditions for each pass are given in Table 1.
References [1] Dong P, Zhang J, Bouchard PJ, "Effects of repair weld length on residual stress distribution", Trans ASME J Press Vessel Technology 124,1, 74-80, 2002 [2] Ohms C., Katsareas D.E., Wimpory R.C., Hornak P., & Youtsos A.G, Residual stress analysis in a thick dissimilar metal based on neutron diffraction, Proceedings of the 2004 ASME/ JSME Pressure Vessels and Piping Conference, PVP-Vol. 479, ISBN-0-7918-4674-1, pp. 85-92, San Diego (California), July 25-29 2004 [3] Bouchard P.J., George D., Santisteban J.R, Bruno G., Dutta M., Edwards L., Kingston E., Smith D.J.
Figure 1: Specimen dimensions.
Table 1: Welding parameters.
The welding conditions for each pass are given in Table 1.
References [1] Dong P, Zhang J, Bouchard PJ, "Effects of repair weld length on residual stress distribution", Trans ASME J Press Vessel Technology 124,1, 74-80, 2002 [2] Ohms C., Katsareas D.E., Wimpory R.C., Hornak P., & Youtsos A.G, Residual stress analysis in a thick dissimilar metal based on neutron diffraction, Proceedings of the 2004 ASME/ JSME Pressure Vessels and Piping Conference, PVP-Vol. 479, ISBN-0-7918-4674-1, pp. 85-92, San Diego (California), July 25-29 2004 [3] Bouchard P.J., George D., Santisteban J.R, Bruno G., Dutta M., Edwards L., Kingston E., Smith D.J.
Online since: July 2020
Authors: Wisnu Ari Adi, Tria Madesa, Mashadi Mashadi, Setyo Purwanto, Didin Sahidin Winatapura, Yunasfi Yunasfi, Yosef Sarwanto
Table 1.
References [1] Zhao, G., Zhang, X., & Morvan, F.
Reviews in Nanoscience and Nanotechnology,. 4(1) (2015) 1-25
Applied Physics Letters, Vol. 44, No. 1 (1 January 1984) 148-149
Advanced Materials Research, Vol. 795: 479-482. doi:10.4028/www.scientific.net/AMR.795.479
References [1] Zhao, G., Zhang, X., & Morvan, F.
Reviews in Nanoscience and Nanotechnology,. 4(1) (2015) 1-25
Applied Physics Letters, Vol. 44, No. 1 (1 January 1984) 148-149
Advanced Materials Research, Vol. 795: 479-482. doi:10.4028/www.scientific.net/AMR.795.479