Microstructural Development in a Ternary Al-Cu-Si Alloy during Transient Solidification

Article Preview

Abstract:

Macrosegregation and microporosity formation numerical models are dependent on microstructural parameters, such as primary and secondary arm spacings to provide the permeability coefficient in the mushy zone. As can be observed in the literature, growth models for ternary alloys for unsteady solidification are rarely found. In this paper, the primary (λ1) dendrite arm spacing was measured along the length of an Al-Cu-Si alloy casting and correlated with transient solidification thermal variables. A combined theoretical and experimental approach has been carried out to quantitatively determine such thermal variables, i.e., transient metal/mold heat transfer coefficient, liquidus isotherm velocity and cooling rate ahead the liquidus front.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

643-650

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. E. Spinelli, D. M. Rosa, I. L. Ferreira, A. Garcia. Mater. Sci. Eng. A Vol. A383 (2004), p.271.

Google Scholar

[2] O. L. Rocha, C. A. Siqueira, A. Garcia. Metall. Mater. Trans. A Vol. A34 (2003) p.995.

Google Scholar

[3] J. D. Hunt. Solidification and Casting of Metals, The Metals Society, London (1979) p.3.

Google Scholar

[4] W. Kurz, J. D. Fisher. Acta Metall. Vol. 29 (1981) p.11.

Google Scholar

[5] R. Trivedi. Metall. Mater. Trans. A Vol. A15 (1984) p.977.

Google Scholar

[6] J. D. Hunt, S. Z. Lu. Metall. Mater. Trans. A Vol. A27 (1996), p.611.

Google Scholar

[7] M. Chen, T. Z. Kattamis. Mater. Sci. Eng. A Vol. A247 (1998) p.239.

Google Scholar

[8] M. V. Canté, J. E. Spinelli, I. L. Ferreira, N. Cheung, A. Garcia. Metall. Mater. Trans. A Vol. A39 (2008) p.1712.

Google Scholar

[9] D. Bouchard, J. S. Kirkaldy. Metall. Mater. Trans. B. Vol. B27 (1996) p.101.

Google Scholar

[10] J. E. Spinelli, A. Garcia. Mater. Letters Vol 59 (2005) p.1691.

Google Scholar

[11] D. M. Rosa, J. E. Spinelli., I. L. Ferreira, A. Garcia. J. Alloys Compd. Vol. 422 (2006) p.227.

Google Scholar

[12] K. S. Cruz, J. E. Spinelli, I. L. Ferreira, N. Cheung , A. Garcia. Mater. Chem. Phys. Vol. 109 (2008) p.87.

Google Scholar

[13] A. P. Silva, J. E. Spinelli, A. Garcia. J. Alloys Compd. Vol. 475 (2009) p.347.

Google Scholar

[14] M. J. M Krane, F. P. Incropera, D. R. Gaskell. Int.J. Heat Mass Transfer Vol. 40 (1997) p.3827.

Google Scholar

[15] M. J. M Krane, F. P. Incropera. Int. J. Heat Mass Transfer Vol. 40 (1997) p.3837.

Google Scholar

[16] P. D. Lee, R. C. Chirazi, R. C. Atwood, W. Wang. Acta Mater. Vol 51 (2003), p.5447.

Google Scholar

[17] I. L. Ferreira, B. Nestler, A. Garcia. Scripta Mater. Vol. 50 (2004), p.407.

Google Scholar

[18] C. R. Swaminathan, V. R. Voller. Int. J. Heat Mass Transfer Vol. 40 (1997) p.2859.

Google Scholar

[19] V. R. Voller. Can. Metall. Quarterly Vol. 37 (1998) p.169.

Google Scholar

[20] C. Y. Wang, C. Berckermann. Metall. Trans. Vol. 24 (1993) p.2787.

Google Scholar