A Study of Point Defects in the B2-Phase Region of the Fe-Al System by Mössbauer Spectroscopy

Article Preview

Abstract:

In this work, Mössbauer spectroscopy and X-ray powder diffraction (XRD) are used in a study of point defect formation in intermetallic phases of the B2 structure of the Fe-Al system as a function of Al concentration. The results are compared with the concentrations of point defect determined from positron annihilation data. In the Mössbauer effect, two types of samples are investigated: Fe-Al alloys with few additives obtained by induction melting and Al-rich metallic powders produced by the self-decomposition method and intensive grinding of high energy in the electro-magneto-mechanical mill. The work presents the values of the 57Fe isomer shift and quadruple splitting for the components describing the point defect in the local environment of a Mössbauer nuclide. The concentration of the Fe vacancies and Fe atoms substituting Al (Fe-AS) are determined. The results show that an increase in Al content causes an increase in vacancy and Fe-AS concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

651-656

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. McKamey (1996) Physical Metallurgy and Processing of Intermetallic Compounds, 351.

Google Scholar

[2] P.R. Munroe (1996) Processing, Properties and Applications Proceedings of ASM, 96.

Google Scholar

[3] J.L. Jordan, S.C. Deevi, Intermetallics 11, 507(2003).

Google Scholar

[4] D.G. Morris, M.A. Morris-Muñoz, Intermetallics 7, 1121 (1999).

Google Scholar

[5] M. Kogachi, T. Haraguchi, S.M. Kim, Intermetallics 6, 499 (1998).

Google Scholar

[6] M. Hillert, M. Selleby, J. of Alloys and Compounds 329, 208 (2001).

Google Scholar

[7] F. Binczyk, Inżynieria Materiałowa 4, 51 (1989).

Google Scholar

[8] F. Binczyk, W. Polechoński, S.J. Skrzypek, Powder Technology 114, 237 (2001).

Google Scholar

[9] J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, B. Sepiol, Phys. Rev. B 58, 22, 14922 (1998).

Google Scholar

[10] A. Broska, J. Wolff, M. Franz, Th. Hehenkamp, Intermetallics 7, 259 (1999).

Google Scholar

[11] A. Ralston, (1975) McGraw-Hill Book Company, London.

Google Scholar

[12] S. Gianella, R.S. Bursa, W. Deng, F. Marino, T. Spataru, G. Principi, J. of Alloys and Compounds 317-318, 485 (2001).

Google Scholar

[13] X. Ren, K. Otsuka, Philosophical Magazine A 80, 467 (2000).

Google Scholar

[14] T. Haraguchi, M. Kogachi, S.M. Kim, Intermetallics 7, 981 (1999).

Google Scholar

[15] A. Hanc, G. Dercz, J. E. Frąckowiak L. Pająk, F. Binczyk, Proc. of the XIX Conf. on Applied Crystallograph,; Eds. H. Morawiec, D. Stróż. 312 (2004).

Google Scholar

[16] A Hanc, J.E. Frąckowiak, Nukleonika 49, S3, 7 (2004).

Google Scholar

[17] A Hanc, J.E. Frąckowiak, Nukleonika 52, S3, 24 (2006).

Google Scholar

[18] A. Hanc, J.E. Frąckowiak, G. Dercz, L. Pająk. Solid State Phenomena 130, 181 (2006).

Google Scholar

[19] J. Kansy, A. Hanc, D. Giebel, M. Jabłońska, Acta Physica Polonica A (2008).

Google Scholar

[20] Michalecki T., Deniszczyk J., Frąckowiak J.E. Nukleonika 49, S3, 3 (2004).

Google Scholar

[21] H.E. Schaefer, R. Wurschum, M. Sob, T. Zak, W. Z. Yu, W. Eckert, and F. Banhart, Phys. Rev. B 41, 11869 (1990).

Google Scholar

[22] L.N. Larikov, V.V. Geichenko, and V Falchenko, (1981) in Difusion Processes in Ordered Alloys, Oxonian, New Delhi.

Google Scholar