Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: January 2010
Authors: C. Hruanun, S. Porntheeraphat, N. Somwang, Amporn Poyai, Win Bunjongpru, S. Sophitpan, J. Nukaew, Sirapat Pratontep, A. Pankiew
The XRD patterns of the film deposited with 3:1 of
N2:Ar flow rate ratio (Fig. 1(b)) reveal the highest of the intensity of TiN(111) whereas the lowest
is at 1:1 (Fig.1(c)).
Fig.1.
The thickness of TiN film deposited onto SiO2/Si wafer at N2:Ar flow rate ratio: Pure N2, 3:1, 1:1 and 1:3 Fig.2. shows the thickness of TiN films deposited onto SiO2/Si wafer at N2:Ar flow rate ratio: Pure N2, 3:1, 1:1 and 1:3 are 472.8 nm, 550.4 nm, 1549.8 nm and 1827.6 nm, respectively.
Table 1.
N2:Ar flow rate ratio N2:Ar Flow rate [sccm] DC power supply [V, A, kW] Electrical Resistivity [µΩ-cm] Pure N2 40:0 565, 10.6, 6 131.91 3:1 1:1 27:9 21:21 517, 11.4, 6 479, 12.4, 6 127.80 171.87 1:3 8:24 475, 12.5, 6 212.54 Reference [1] M.Boumerzoug, Z.Pang, M.Boudreau and P.Mascher, Appl.Phys.Lett.66, 1995 [2] I.Suni, M.Biomberg, J.Saarilahti and J.Vac, Sci.Technol.
Fig.1.
The thickness of TiN film deposited onto SiO2/Si wafer at N2:Ar flow rate ratio: Pure N2, 3:1, 1:1 and 1:3 Fig.2. shows the thickness of TiN films deposited onto SiO2/Si wafer at N2:Ar flow rate ratio: Pure N2, 3:1, 1:1 and 1:3 are 472.8 nm, 550.4 nm, 1549.8 nm and 1827.6 nm, respectively.
Table 1.
N2:Ar flow rate ratio N2:Ar Flow rate [sccm] DC power supply [V, A, kW] Electrical Resistivity [µΩ-cm] Pure N2 40:0 565, 10.6, 6 131.91 3:1 1:1 27:9 21:21 517, 11.4, 6 479, 12.4, 6 127.80 171.87 1:3 8:24 475, 12.5, 6 212.54 Reference [1] M.Boumerzoug, Z.Pang, M.Boudreau and P.Mascher, Appl.Phys.Lett.66, 1995 [2] I.Suni, M.Biomberg, J.Saarilahti and J.Vac, Sci.Technol.
Online since: September 2007
Authors: Xian Shun Bi, Xue Feng Cai, Jian Xun Zhang
The
displacement w is represented by the series
2
* (1 2,1 2) 1 2
2 2 2
1
( ,0, ) ( )(1 ) 0
n n
n
x x
w x p a P x l
l l
∞
−
=
= − < <
∑ (17)
where na are unknown coefficients to be determined and (1 2,1 2)
2 2 ( )nP x− is a Jacobi polynomial.
The Fourier transformation of Eq.(17) with respect x, then substituting it into Eq.(16), the stress * yzt along the crack line( 0y = ) in the Laplace transformed plane can be obtained as follows: 1 * 0 2 1 0 1 ( 1) (2 1 2) 2 ( ) ( )cos( ) (2 2)!
According to this method, the yzt can be expressed as follow: (0, ) 1 ( ) [2exp( ) 1] N yz n n n t t c P t β δ = = − − ∑ (19) Where 1β> − , 0δ> and nc is given by * 1 ( 1)( 2) [( 1) ( 2)] [( ) ] ( )( 1) [( ) ( 1)] k m m k k k m f k c k k k m δ β δ β β β = − − − − − + = + + + + − − ∑ L L 2m ≥ (20) 1 1 c kβ = + (21) 6.
Mech. 1998, 60(4):479~487 [3]A.C.
Vol.1.
The Fourier transformation of Eq.(17) with respect x, then substituting it into Eq.(16), the stress * yzt along the crack line( 0y = ) in the Laplace transformed plane can be obtained as follows: 1 * 0 2 1 0 1 ( 1) (2 1 2) 2 ( ) ( )cos( ) (2 2)!
According to this method, the yzt can be expressed as follow: (0, ) 1 ( ) [2exp( ) 1] N yz n n n t t c P t β δ = = − − ∑ (19) Where 1β> − , 0δ> and nc is given by * 1 ( 1)( 2) [( 1) ( 2)] [( ) ] ( )( 1) [( ) ( 1)] k m m k k k m f k c k k k m δ β δ β β β = − − − − − + = + + + + − − ∑ L L 2m ≥ (20) 1 1 c kβ = + (21) 6.
Mech. 1998, 60(4):479~487 [3]A.C.
Vol.1.
Online since: November 2011
Authors: Klemen Možina, Franci Sluga, Stanislav Praček
With such a winding angle the quantity Ω=cos/(1-sin) differs from 1 on the fourth decimal place.
In parallel packages one has Ω = 1.
For small angles one finds Ω = 1.
Angle ϕ Ω at winding backward Angle ϕ Ω at winding forward ~0° 1 ~0° 1 10° 1,19 -10° 0,84 20° 1,42 -20° 0,70 30° 1,73 -30° 0,58 40° 2,14 -40° 0,47 References [1] Praček, S. (2002).
A, 436 479-498
In parallel packages one has Ω = 1.
For small angles one finds Ω = 1.
Angle ϕ Ω at winding backward Angle ϕ Ω at winding forward ~0° 1 ~0° 1 10° 1,19 -10° 0,84 20° 1,42 -20° 0,70 30° 1,73 -30° 0,58 40° 2,14 -40° 0,47 References [1] Praček, S. (2002).
A, 436 479-498
Online since: November 2014
Authors: Siti Aisyah Razali, Nor Azwadi Che Sidik
These difficulties have led to the development of LB models [1-3].
The discrete velocity is expressed as ei = (0, 0) for i = 0, ei = (cos (i – 1)p/4, sin (i – 1)p/4) for i = 1, 3, 5, 7 and ei = 21/2(cos (i – 1)p/4, sin (i – 1)p/4) for i = 2, 4, 6, 8.
For D2Q9 model, fi eq is defined as: (4) Where c = (3RT)1/2 and the weights are w0 = 4/9, w1,3,5,7 = 1/9 and w2,4,6,8 = 1/36.
References [1] U.
Lett. 17 (1992) 479–484
The discrete velocity is expressed as ei = (0, 0) for i = 0, ei = (cos (i – 1)p/4, sin (i – 1)p/4) for i = 1, 3, 5, 7 and ei = 21/2(cos (i – 1)p/4, sin (i – 1)p/4) for i = 2, 4, 6, 8.
For D2Q9 model, fi eq is defined as: (4) Where c = (3RT)1/2 and the weights are w0 = 4/9, w1,3,5,7 = 1/9 and w2,4,6,8 = 1/36.
References [1] U.
Lett. 17 (1992) 479–484
Online since: December 2012
Authors: Rong Mao Zheng
Table 1.
Each sensor node coordinates 1 2 3 3 5 6 7 8 9 10 11 12 13 13 15 16 0 0 1 2 3 3 3 3 5 5 7 8 8 9 9 9 0 3 8 5 6 5 6 8 1 9 2 3 9 3 3 7 Table 2.
The distance of each sensor node 1 2 3 3 5 6 7 8 9 10 11 12 13 13 15 16 1 0 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 3 0 ∞ 2.8 3.2 3.5 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 ∞ ∞ 0 3.2 2.8 3.2 3.6 3 ∞ 3.1 ∞ ∞ ∞ ∞ ∞ ∞ 3 ∞ 2.8 3.2 0 1.3 2 2.2 3.6 5 5 ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 3.2 2.8 1.3 0 1.3 1 2.2 ∞ 3.6 ∞ ∞ ∞ ∞ ∞ ∞ 6 ∞ 3.5 3.2 2 1.3 0 1 3 3.1 3.1 3.2 3.5 ∞ ∞ ∞ ∞ 7 ∞ 5 3.6 2.2 1 1 0 2 ∞ 3.2 5 5 5 ∞ ∞ ∞ 8 ∞ ∞ 3 3.6 2.2 3 2 0 ∞ 1.3 ∞ ∞ 3.1 ∞ ∞ ∞ 9 ∞ ∞ ∞ 5 ∞ 3.1 ∞ ∞ 0 ∞ 2.2 3.6 ∞ 3.5 5 ∞ 10 ∞ ∞ 3.1 5 3.6 3.1 3.2 1.3 ∞ 0 ∞ ∞ 3 ∞ ∞ 3.5 11 ∞ ∞ ∞ ∞ ∞ 3.2 5 ∞ 2.2 ∞ 0 1.3 ∞ 2.2 2.8 ∞ 12 ∞ ∞ ∞ ∞ ∞ 3.5 5 ∞ 3.6 ∞ 1.3 0 ∞ 1 1.3 3.1 13 ∞ ∞ ∞ ∞ ∞ ∞ 5 3.1 ∞ 3 ∞ ∞ 0 ∞ ∞ 2.2 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.5 ∞ 2.2 1 ∞ 0 1 3 15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 2.8 1.3 ∞ 1 0 3 16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.5 ∞ 3.1 2.2 3 3 0 Design of monitoring system based on wireless sensor network Fig 3 is shown the structure of monitoring system that based on wireless sensor network, the system mainly consists of monitoring nodes and backend server.
Fig 1.
In: International Conference on Challenges in Environmental Science and Computer Engineering, pp. 475–479.
Each sensor node coordinates 1 2 3 3 5 6 7 8 9 10 11 12 13 13 15 16 0 0 1 2 3 3 3 3 5 5 7 8 8 9 9 9 0 3 8 5 6 5 6 8 1 9 2 3 9 3 3 7 Table 2.
The distance of each sensor node 1 2 3 3 5 6 7 8 9 10 11 12 13 13 15 16 1 0 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 3 0 ∞ 2.8 3.2 3.5 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 ∞ ∞ 0 3.2 2.8 3.2 3.6 3 ∞ 3.1 ∞ ∞ ∞ ∞ ∞ ∞ 3 ∞ 2.8 3.2 0 1.3 2 2.2 3.6 5 5 ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 3.2 2.8 1.3 0 1.3 1 2.2 ∞ 3.6 ∞ ∞ ∞ ∞ ∞ ∞ 6 ∞ 3.5 3.2 2 1.3 0 1 3 3.1 3.1 3.2 3.5 ∞ ∞ ∞ ∞ 7 ∞ 5 3.6 2.2 1 1 0 2 ∞ 3.2 5 5 5 ∞ ∞ ∞ 8 ∞ ∞ 3 3.6 2.2 3 2 0 ∞ 1.3 ∞ ∞ 3.1 ∞ ∞ ∞ 9 ∞ ∞ ∞ 5 ∞ 3.1 ∞ ∞ 0 ∞ 2.2 3.6 ∞ 3.5 5 ∞ 10 ∞ ∞ 3.1 5 3.6 3.1 3.2 1.3 ∞ 0 ∞ ∞ 3 ∞ ∞ 3.5 11 ∞ ∞ ∞ ∞ ∞ 3.2 5 ∞ 2.2 ∞ 0 1.3 ∞ 2.2 2.8 ∞ 12 ∞ ∞ ∞ ∞ ∞ 3.5 5 ∞ 3.6 ∞ 1.3 0 ∞ 1 1.3 3.1 13 ∞ ∞ ∞ ∞ ∞ ∞ 5 3.1 ∞ 3 ∞ ∞ 0 ∞ ∞ 2.2 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.5 ∞ 2.2 1 ∞ 0 1 3 15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 2.8 1.3 ∞ 1 0 3 16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.5 ∞ 3.1 2.2 3 3 0 Design of monitoring system based on wireless sensor network Fig 3 is shown the structure of monitoring system that based on wireless sensor network, the system mainly consists of monitoring nodes and backend server.
Fig 1.
In: International Conference on Challenges in Environmental Science and Computer Engineering, pp. 475–479.
Online since: June 2008
Authors: Yi He Zhang, Li Hang Zhao, Yu Quan Wen, Wei Zhen, Qing Song Su
Synthesis of Si3N4/polyimide hybrid films
Yuquan Wen*1, a, Yihe Zhang
*2, b, Wei Zhen
1, c
, Qingsong Su
2, d
, Lihang Zhao
2, e
1
State Key Lab of Explosive Science and Technology, Beijing Institute of Technology,
Beijing 100081, P.R.
The characteristic peaks of symmetric C=O stretching and asymmetric C=O stretching of the imide group are clearly visible at 1718 cm −1 and 1776 cm−1, respectively.
The bending vibration of C=O appears at 725 cm−1.
The assignment of the stretching of the imide ring is at 1377 cm−1[4].
[11] Y H Zhang, RKY Li and S Fu: Materials Science Forum, 2005, Vol.475-479 (2005):1073
The characteristic peaks of symmetric C=O stretching and asymmetric C=O stretching of the imide group are clearly visible at 1718 cm −1 and 1776 cm−1, respectively.
The bending vibration of C=O appears at 725 cm−1.
The assignment of the stretching of the imide ring is at 1377 cm−1[4].
[11] Y H Zhang, RKY Li and S Fu: Materials Science Forum, 2005, Vol.475-479 (2005):1073
Online since: May 2015
Authors: Shang Liang Chen, Yun Yao Chen, Suang Hong Kuo
The advantages of server load balance include:
1.
Types of Load Balance of Web Servers A server load balance method is divided into two types of hardware and software: 1.
Level 3: cloud load balance distribution platform (CLBDP) (1) To receive user requests
Level 5: cloud server (1) Storage from the cloud-service pool server group
Hsu: Development of Software-as-a-Service Cloud Computing Architecture for Manufacturing Management Systems Based on Virtual COM Port Driver Technology, Applied Mechanics and Materials, Vol. 479-480, No. 5 (2013), pp. 1023-1026
Types of Load Balance of Web Servers A server load balance method is divided into two types of hardware and software: 1.
Level 3: cloud load balance distribution platform (CLBDP) (1) To receive user requests
Level 5: cloud server (1) Storage from the cloud-service pool server group
Hsu: Development of Software-as-a-Service Cloud Computing Architecture for Manufacturing Management Systems Based on Virtual COM Port Driver Technology, Applied Mechanics and Materials, Vol. 479-480, No. 5 (2013), pp. 1023-1026
Online since: July 2013
Authors: Xiao Yong Chen
Fig. 1 Drawing of the supporting-foot plastic part
The product is consisted of a large square, some small cylinder and a cone.
In the range of each factor, 4 levels are uniformly selected, as shown in table 1[1].
Warpage values at endpoints of the crack along Z axis obtained from the experiments are shown in table 2[1].
References [1] Ko-Ta Chiang, Fu-ping Chang, Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology.
Int J Adv Manuf Technol 35(2007) 468–479
In the range of each factor, 4 levels are uniformly selected, as shown in table 1[1].
Warpage values at endpoints of the crack along Z axis obtained from the experiments are shown in table 2[1].
References [1] Ko-Ta Chiang, Fu-ping Chang, Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology.
Int J Adv Manuf Technol 35(2007) 468–479
Online since: May 2014
Authors: Ping Li, Yong Zhong Zhu, Yuan Yuan Guo, Yu Peng
The Antenna Design
1.
As shown in Figure 1 a, air-gap L-shaped feeding arc slot antenna structure is equivalent to taking air as the medium substrate of a microstrip patch antenna.
The air-gap L-shaped feeding arc slot antenna structure shows in figure 1 b.
References [1] Rong Fengmei, Gong Shuxi, He Xiulian.
Journal of Xi’an Electronic University,2006(33):479-481
As shown in Figure 1 a, air-gap L-shaped feeding arc slot antenna structure is equivalent to taking air as the medium substrate of a microstrip patch antenna.
The air-gap L-shaped feeding arc slot antenna structure shows in figure 1 b.
References [1] Rong Fengmei, Gong Shuxi, He Xiulian.
Journal of Xi’an Electronic University,2006(33):479-481
Online since: May 2011
Authors: Xin Ma
The corresponding parameters are shown in Table 1.
The parameters of model under the case 1. 15 8 5 3 0.10 120 0 Figure 1.
The following equitation can be derived while the parameters of Tab.1 are introduced
References [1] Jashankarya M.S: Supplier Diversification Effect of Discrete Demand.
IIE Transactions, Vol.39 (2007), p.465~479.
The parameters of model under the case 1. 15 8 5 3 0.10 120 0 Figure 1.
The following equitation can be derived while the parameters of Tab.1 are introduced
References [1] Jashankarya M.S: Supplier Diversification Effect of Discrete Demand.
IIE Transactions, Vol.39 (2007), p.465~479.