Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: May 2024
Authors: Abdellatif Imad, Youssef Ben Smail, Ahmed El Moumen, Fatima Lmai
El Moumen3,c and A.
El Achaby, Z.
El Achaby, Y.
El Moumen, A.
El Moumen, A.
El Achaby, Z.
El Achaby, Y.
El Moumen, A.
El Moumen, A.
Online since: April 2010
Authors: Chin-Pao Cheng, C.H. Tesng, C.H. Liu
EL spectra and CIE coordinates of
the devices were measured by a TOPCON SR-1 spectrophotometer and the luminance-current density-voltage characteristics were recorded simultaneously with measurement of the EL spectra by
combining the spectrometer with Keithley model 2400 programmable voltage-current source.
After the doping of rubrene into NPB, the EL spectra of OLEDs show white-light emission with a large broad wavelength from 400 to 700 nm, as shown in Fig. 5.
Current Density (mA/cm2) 0 20 40 60 80 100 120 140 Efficiency (cd/A) 0.0 0.5 1.0 1.5 2.0 ITO/MTDATA(15nm)/NPB(40nm)/BCP(25nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/Alq(15nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/BCP:Alq(1:2)(15nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/BCP:Alq(1:4)(15nm)/LiF(0.7nm)/Al(180nm) Fig. 4.
Wavelenght (nm) 300 400 500 600 700 800 EL Intensity (a.u) 0.00 0.02 0.04 0.06 0.08 0.10 ITO/ MTDATA (15nm) / NPB:Rubrene0.5%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) ITO/ MTDATA (15nm) / NPB:Rubrene1.0%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) ITO/ MTDATA (15nm) / NPB:Rubrene2.0%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) Fig. 5.
The EL spectra of white-light OLEDs with different concertrations of Rubrene.
After the doping of rubrene into NPB, the EL spectra of OLEDs show white-light emission with a large broad wavelength from 400 to 700 nm, as shown in Fig. 5.
Current Density (mA/cm2) 0 20 40 60 80 100 120 140 Efficiency (cd/A) 0.0 0.5 1.0 1.5 2.0 ITO/MTDATA(15nm)/NPB(40nm)/BCP(25nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/Alq(15nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/BCP:Alq(1:2)(15nm)/LiF(0.7nm)/Al(180nm) ITO/MTDATA(15nm)/NPB(40nm)/BCP(10nm)/BCP:Alq(1:4)(15nm)/LiF(0.7nm)/Al(180nm) Fig. 4.
Wavelenght (nm) 300 400 500 600 700 800 EL Intensity (a.u) 0.00 0.02 0.04 0.06 0.08 0.10 ITO/ MTDATA (15nm) / NPB:Rubrene0.5%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) ITO/ MTDATA (15nm) / NPB:Rubrene1.0%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) ITO/ MTDATA (15nm) / NPB:Rubrene2.0%(40nm) /BCP(10nm) / BCP:Alq(1:2)(15nm) / LiF(0.7nm) /Al(180nm) Fig. 5.
The EL spectra of white-light OLEDs with different concertrations of Rubrene.
Online since: June 2018
Authors: Omar A. Ibrahim, Ahmed F. Mohammed, Wasan R. Saleh
The EL spectrum reveals a broad emission band covering the range 350 - 700 nm.
Meanwhile, electrons are injected from the LiF the buffer Al cathode into the conduction band (C.B).
Figure (7) shows the EL measurements.
Table 2: EL coordinates for hybrid devices.
Chen et al., Crystal field, phonon coupling and emission shift of Mn2+ in ZnS: Mn nanoparticles.
Meanwhile, electrons are injected from the LiF the buffer Al cathode into the conduction band (C.B).
Figure (7) shows the EL measurements.
Table 2: EL coordinates for hybrid devices.
Chen et al., Crystal field, phonon coupling and emission shift of Mn2+ in ZnS: Mn nanoparticles.
Online since: October 2010
Edited by: David J. Fisher
As well as the 562 metals abstracts, the issue includes: “Bulk Diffusion of Homovalent Atomic Probes of Scandium, Lanthanum and Thorium in Single Crystals of Tungsten” (Klotsman, Tatarinova & Timofeev), “Behaviour of Artificial Aging in 6066 Alloy using Microhardness and Nuclear Techniques” (Badawi, Abdel-Rahman, El-Nahhas & Abdel-Rahman), “Structure and Hardness of Al-Fe-Ti Alloys“ (Bendjeddou & Debili), “Electrical Resistivity Improvement by Precipitation and Strain in Al-Cu Thin Films” (Lallouche & Debili), “Density Functional Theory Study of Kink with P in BCC Iron“ (Chen, Yu & Qiu), “Formulation of Impurity-Vacancy Pair Formation Energy in Fast Diffusion” (Ghorai), “Theoretical Study of the Local Distortion for Ni+ in Magnesium Oxide (Li), “A Study of the Physical Properties of Te15(Se100-xBix)85 Glassy Alloys“ (Kumar, Thakur, Katyal & Sharma), “Non-Gaussian Local Density Diffusion Model for Boron Diffusion in Si- and SixGe1-x Ultra-Shallow Junction Post-Implant
Online since: August 2022
Authors: Abdelhamid Kerkour El-Miad, Abdelaaziz El Moussaouy, Reda Boussetta, Mohammed Hbibi, Soufiane Chouef, Omar Mommadi, Laaziz Belamkadem, Juan Alejandro Vinasco, Carlos Alberto Duque
El Moussaouy, M.
El Hadi, A.
El Hadi, A.
El Hadi, M.
El Hadi, A.
El Hadi, A.
El Hadi, A.
El Hadi, M.
El Hadi, A.
Online since: November 2010
Authors: Sung Koo Lee, Kyeong K. Lee, Bo Eun Kim, Eun Hee Lim
Finally, the EL device was fabricated using Tz-2T-Hex as an active layer.
In order to examine the electroluminescence (EL) properties and the current–voltage–luminance characteristics of the synthesized oligomer, devices with the configuration of ITO/PEDOT:PSS (20nm)/ Tz-2T-Hex (100 nm)/LiF (1nm)/Al (500 nm) were fabricated.
The EL spectrum of the oligomer is shown in Figure 3, together with the UV and PL spectra in film state.
UV-Vis (solid line), PL (dashed line), and EL (dotted line, solid line for smoothing) spectra of oligomer film.
The maximum EL efficiency was found to be up to 800mA/cm2 and the device showed turn-on voltages (VT) at around 6.0 V.
In order to examine the electroluminescence (EL) properties and the current–voltage–luminance characteristics of the synthesized oligomer, devices with the configuration of ITO/PEDOT:PSS (20nm)/ Tz-2T-Hex (100 nm)/LiF (1nm)/Al (500 nm) were fabricated.
The EL spectrum of the oligomer is shown in Figure 3, together with the UV and PL spectra in film state.
UV-Vis (solid line), PL (dashed line), and EL (dotted line, solid line for smoothing) spectra of oligomer film.
The maximum EL efficiency was found to be up to 800mA/cm2 and the device showed turn-on voltages (VT) at around 6.0 V.
Online since: January 2017
Authors: Jun Su, Cai Hong Li
El-Nashar, M.G.
El-Nashar, A.F.
Al-Hartomy, A.A.
Al-Ghamdi, S.A.F.
Al Said, N.
El-Nashar, A.F.
Al-Hartomy, A.A.
Al-Ghamdi, S.A.F.
Al Said, N.
Online since: August 2009
Authors: Yong Zhang, Zhi Wei Mao, Di Kai Guan, Shu Quan Liang, Yan Tang
The electrochemical
activity of Al anode is mainly controlled by the distribution of active elements and phase
segregation in Al matrix [6].
Li, et al: Nonferrous Metals Vol.54-1(2002), p.19 [2] Q.F.
El Shayeb, F.M.
Abd El Wahab, S.
Zein El Abedin: Corrosion Science Vol.43(2001), p.643 [4] I.
Li, et al: Nonferrous Metals Vol.54-1(2002), p.19 [2] Q.F.
El Shayeb, F.M.
Abd El Wahab, S.
Zein El Abedin: Corrosion Science Vol.43(2001), p.643 [4] I.
Online since: December 2011
Authors: Abdelkhalak El Hami, Khalil El-Hami
Iijima, Nature, Vol. 333 (1993), p. 361
[4] K.El-Hami, H.
El-Hami and K.
Abo Al-kheer, A.
El-Hami, M.G.
El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency.
El-Hami and K.
Abo Al-kheer, A.
El-Hami, M.G.
El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency.
Online since: June 2014
Authors: Suresh Kumar Reddy Narala, Sravan Kumar Josyula
EL Zhang[7] successfully fabrication of Al-TiC composite using this processes.
Shyu etal [16] used Al–5.1Cu–6.2Ti was used as a matrix materialin this process for fabrication Al-TiC composite.
R N Rai et al [20] observed that CF are less in Al-TiC PMMC than those of Al–TiAl3, Al–Si and pure Al as shown in fig 4.
[7] El Zhang, B Yang, S Y Zeng, QC Li, M Z Ma, Experimental study on reaction synthesis of TiC in Al-Ti-C system, ACTA Metallurgic Sinica 11:4 (1998) 255-260
[10] El Zhang, Zeng Xiaochun, Zeng Songyan, Li Aingchun, Microstructure and properties of Al/TiC composite prepared by reaction synthesis, Transaction of NFsoc, 16:1(1996) 114-119
Shyu etal [16] used Al–5.1Cu–6.2Ti was used as a matrix materialin this process for fabrication Al-TiC composite.
R N Rai et al [20] observed that CF are less in Al-TiC PMMC than those of Al–TiAl3, Al–Si and pure Al as shown in fig 4.
[7] El Zhang, B Yang, S Y Zeng, QC Li, M Z Ma, Experimental study on reaction synthesis of TiC in Al-Ti-C system, ACTA Metallurgic Sinica 11:4 (1998) 255-260
[10] El Zhang, Zeng Xiaochun, Zeng Songyan, Li Aingchun, Microstructure and properties of Al/TiC composite prepared by reaction synthesis, Transaction of NFsoc, 16:1(1996) 114-119