[1]
O. Mommadi, A. El Moussaouy, M. Chnafi, M. El Hadi, A. Nougaoui, H. Magrez, Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field, Physica E Low Dimens. Syst. Nanostruct. 118 (2020) 113903.
DOI: 10.1016/j.physe.2019.113903
Google Scholar
[2]
A. El Moussaouy, N. Ouchani, Y. El Hassouani, D. Abouelaoualim, Temperature and hydrostatic pressure effects on exciton–phonon coupled states in semiconductor quantum dot, Superlattices Microstruct., 73 (2014) 22-37.
DOI: 10.1016/j.spmi.2014.05.006
Google Scholar
[3]
A. El Moussaouy, D. Bria, A. Nougaoui, Hydrostatic stress dependence of the exciton–phonon coupled states in cylindrical quantum dots, Physica B Condens. Matter, 370 (2005) 178-185.
DOI: 10.1016/j.physb.2005.09.008
Google Scholar
[4]
O. Mommadi, A. El Moussaouy, M. El Hadi, A. Nougaoui, Excitonic properties in an asymmetric quantum dot nanostructure under combined influence of temperature and lateral hydrostatic pressure, Materials Today: Proceedings. 13 (2019) 1023-1032.
DOI: 10.1016/j.matpr.2019.04.067
Google Scholar
[5]
O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani, C. A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects, Philos Mag (Abingdon). 101(6) (2021) 753-775.
DOI: 10.1080/14786435.2020.1862430
Google Scholar
[6]
S. Stufler, P.Ester, A. Zrenner, M. Bichler, Quantum optical properties of a single In x Ga 1− x As− Ga As quantum dot two-level system, Phys. Rev. B. 72(12) (2005) 121301.
DOI: 10.1103/physrevb.72.121301
Google Scholar
[7]
D. A. Baghdasaryan, D. B. Hayrapetyan, E. M. Kazaryan, H. A. Sarkisyan, Thermal and magnetic properties of electron gas in toroidal quantum dot, Physica E Low Dimens. Syst. Nanostruct. 101(2018)1-4.
DOI: 10.1016/j.physe.2018.03.009
Google Scholar
[8]
T. Chen, W. Xie, S. Liang, Optical and electronic properties of a two-dimensional quantum dot with an impurity, J. Lumin. 139 (2013) 64-68.
DOI: 10.1016/j.jlumin.2013.02.030
Google Scholar
[9]
A. M. Smith, A. M. Mohs, S. Nie, Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain, Nat. Nanotechnol., 4(1) (2009) 56-63.
DOI: 10.1038/nnano.2008.360
Google Scholar
[10]
H. Taş, M. Şahin, The electronic properties of a core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity, J. Appl. Phys. 111(8) (2012) 083702.
DOI: 10.1063/1.3702874
Google Scholar
[11]
Z. I. Alferov, The double heterostructure: The concept and its applications in physics, electronics, and technology (Nobel lecture), ChemPhysChem. 2(8‐9) (2001) 500-513.
DOI: 10.1002/1439-7641(20010917)2:8/9<500::aid-cphc500>3.0.co;2-x
Google Scholar
[12]
K. A. Fedorova, Near-IR InAs/GaAs Quantum-Dot Lasers and their Application for Efficient Frequency Conversion, International Conference Laser Optics (ICLO) (2018) (pp.141-141). IEEE.
DOI: 10.1109/lo.2018.8435898
Google Scholar
[13]
Z. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim, Solar-energy converters based on pn AlxGal-x As-GaAs heterojunctions, Sov. Phys.-Semicond., 4(12) (1971).
Google Scholar
[14]
S. Le Goff, B. Stébé, Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors, Phys. Rev. B, 47(3) (1993) 1383.
DOI: 10.1103/physrevb.47.1383
Google Scholar
[15]
M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J. A. Vinasco, D. Laroze, F. Mora-Rey, C. A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattices Microstruct. 159 (2021). 107052.
DOI: 10.1016/j.spmi.2021.107052
Google Scholar
[16]
M. Koksal, E. Kilicarslan, H. Sari, I. Sokmen, Effet du champ magnétique sur la susceptibilité diamagnétique des impuretés hydrogénées dans les fils de puits quantiques, Physica B Condens. Matter, 404 (2009) 3850 – 3854.
DOI: 10.1016/j.physb.2009.07.103
Google Scholar
[17]
S. M. Arif, A. Bera, M. Ghosh, Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay, Heliyon, 5(1) (2019) e01147.
DOI: 10.1016/j.heliyon.2019.e01147
Google Scholar
[18]
L. Belamkadem, O. Mommadi, J. A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C. A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E Low Dimens. Syst. Nanostruct. 129 (2021) 114642.
DOI: 10.1016/j.physe.2021.114642
Google Scholar
[19]
E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, P. M. Petroff, Multiexciton spectroscopy of a single self-assembled quantum dot, Phys. Rev. Lett., 80 (1998) 4991–4994.
DOI: 10.1103/physrevlett.80.4991
Google Scholar
[20]
J. M. Gerard, B. Gayral, Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17 (1999) (2089).
DOI: 10.1109/50.802999
Google Scholar
[21]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoğlu, A quantum dot single-photon turnstile device. Science. 290 (2000) 2282–2285.
DOI: 10.1126/science.290.5500.2282
Google Scholar
[22]
O. Zilberberg, B. Braunecker, D. Loss, Controlled-not gate for multiparticle qubits and topological quantum computation based on parity measurements, Phys. Rev. A. 77 (2008) 012327.
DOI: 10.1103/physreva.77.012327
Google Scholar
[23]
C. Bose, C. K. Sarkar, Perturbation calculation of donor states in a spherical quantum dot, Solid-State Electronics, 42(9) (1998) 1661-1663.
DOI: 10.1016/s0038-1101(98)00126-9
Google Scholar
[24]
J. W. Brown, H. N. Spector, Hydrogen impurities in quantum well wires, J. Appl. Phys. 59 (1986) 1179–1186.
Google Scholar
[25]
W. Xie, Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot, Physica B. 404 (2009) 4142–4145.
DOI: 10.1016/j.physb.2009.07.177
Google Scholar
[26]
G. Rezaei, B. Vaseghi, N.A. Doostimotlagh, Linear and nonlinear optical properties of spherical quantum dots: Effects of hydrogenic impurity and conduction band non-parabolicity, Commun. Theor. Phys. 57 (2012) 485–489.
DOI: 10.1088/0253-6102/57/3/24
Google Scholar
[27]
E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots, Superlattices Microstruct. 107142 (2022) 0749-6036.
DOI: 10.1016/j.spmi.2021.107142
Google Scholar
[28]
Y. Chrafih, K. Rahmani, M. Khenfouch, I. Zorkani, GaAlAs/GaAs cubical inhomogeneous quantum dot (core/shell) under external excitations: the photoionization cross-section of donor impurity with the polaronic effect, J. Nanophotonics 14 (2020) 016001.
DOI: 10.1117/1.jnp.14.016001
Google Scholar
[29]
E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos and C.A. Duque, Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field,, Philos. Mag. (Abingdon) 97 (18) (2017) 1445-1463.
DOI: 10.1080/14786435.2017.1302613
Google Scholar
[30]
M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In,Ga)N/GaN multilayer cylindrical quantum dots, Superlattices Microstruct. 107146, (2022) 0749-6036.
DOI: 10.1016/j.physe.2022.115450
Google Scholar
[31]
A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A. 127.12 (2021) 1-9.
DOI: 10.1007/s00339-021-05055-x
Google Scholar
[32]
A.Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation, Superlattices Microstruct. 69 (2014) 38-52.
DOI: 10.1016/j.spmi.2014.01.011
Google Scholar
[33]
H. Satori, A Sali, The finite element simulation for the shallow impurity in quantum dots, Physica E Low Dimens. Syst. Nanostruct. 48 (2013) 171-175.
DOI: 10.1016/j.physe.2012.12.010
Google Scholar
[34]
V. Holovatsky, M. Chubrey, O. Voitsekhivska, Effect of electric field on photoionisation cross-section of impurity in multilayered quantum dot Superlattice. Microstruct. 145 (2020) 106642.
DOI: 10.1016/j.spmi.2020.106642
Google Scholar
[35]
S. Ortakaya, M. Kirak, A. Guldeste, Size-dependent electronic and optical properties in zinc-blende InGaN/GaN multilayer spherical quantum dot, J. Nonlinear Opt. Phys. Mater. 26 (2017)1–13.
DOI: 10.1142/s0218863517500357
Google Scholar
[36]
G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132.
DOI: 10.1016/j.physe.2014.10.011
Google Scholar
[37]
A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, P. M. Petroff, Spectroscopy of nanoscopic semiconductor rings, Phys. Rev. Lett., 84 (2000) 2223.
DOI: 10.1103/physrevlett.84.2223
Google Scholar
[38]
S. N. Mohajer, A. Ibral, J. El Khamkhami, E. M. Assaid, Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle, Physica B Condens. Matter. 497 (2016) 51-58.
DOI: 10.1016/j.physb.2016.05.028
Google Scholar