Size Effect of Hemi-Toroidal Quantum Dot on the Electronic Properties in the Presence of an Off-Center Hydrogenic Shallow Donor Impurity

Article Preview

Abstract:

We have studied the electronic properties in presence of an off-center hydrogenic shallow donor impurity confined in GaAs semiconductor quantum dot with toroidal geometry by considering the infinite confinement potential. This study has been performed within the parabolic band and the effective mass approximations in the presence of an off-center donor impurity. Three-dimensional Schrödinger equations are discretized using the finite difference method on a mesh containing Nr*Nθ*Nφ nodes. The numerical results of the analytical calculations demonstrate that the variation of the geometrical and torus radii (Rg and Rc) has a remarkable effect on the donor energy and the average electron-impurity distance, which is quite remarkable in small hemi-Toroidal quantum dot. On the other hand, we've demonstrated that the donor atom's position has a considerable impact on their energy. Furthermore, our numerical results show that the geometrical radius and donor atom's position significantly affect the electron impurity binding energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-63

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Mommadi, A. El Moussaouy, M. Chnafi, M. El Hadi, A. Nougaoui, H. Magrez, Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field, Physica E Low Dimens. Syst. Nanostruct. 118 (2020) 113903.

DOI: 10.1016/j.physe.2019.113903

Google Scholar

[2] A. El Moussaouy, N. Ouchani, Y. El Hassouani, D. Abouelaoualim, Temperature and hydrostatic pressure effects on exciton–phonon coupled states in semiconductor quantum dot, Superlattices Microstruct., 73 (2014) 22-37.

DOI: 10.1016/j.spmi.2014.05.006

Google Scholar

[3] A. El Moussaouy, D. Bria, A. Nougaoui, Hydrostatic stress dependence of the exciton–phonon coupled states in cylindrical quantum dots, Physica B Condens. Matter, 370 (2005) 178-185.

DOI: 10.1016/j.physb.2005.09.008

Google Scholar

[4] O. Mommadi, A. El Moussaouy, M. El Hadi, A. Nougaoui, Excitonic properties in an asymmetric quantum dot nanostructure under combined influence of temperature and lateral hydrostatic pressure, Materials Today: Proceedings. 13 (2019) 1023-1032.

DOI: 10.1016/j.matpr.2019.04.067

Google Scholar

[5] O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani, C. A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects, Philos Mag (Abingdon). 101(6) (2021) 753-775.

DOI: 10.1080/14786435.2020.1862430

Google Scholar

[6] S. Stufler, P.Ester, A. Zrenner, M. Bichler, Quantum optical properties of a single In x Ga 1− x As− Ga As quantum dot two-level system, Phys. Rev. B. 72(12) (2005) 121301.

DOI: 10.1103/physrevb.72.121301

Google Scholar

[7] D. A. Baghdasaryan, D. B. Hayrapetyan, E. M. Kazaryan, H. A. Sarkisyan, Thermal and magnetic properties of electron gas in toroidal quantum dot, Physica E Low Dimens. Syst. Nanostruct. 101(2018)1-4.

DOI: 10.1016/j.physe.2018.03.009

Google Scholar

[8] T. Chen, W. Xie, S. Liang, Optical and electronic properties of a two-dimensional quantum dot with an impurity, J. Lumin. 139 (2013) 64-68.

DOI: 10.1016/j.jlumin.2013.02.030

Google Scholar

[9] A. M. Smith, A. M. Mohs, S. Nie, Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain, Nat. Nanotechnol., 4(1) (2009) 56-63.

DOI: 10.1038/nnano.2008.360

Google Scholar

[10] H. Taş, M. Şahin, The electronic properties of a core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity, J. Appl. Phys. 111(8) (2012) 083702.

DOI: 10.1063/1.3702874

Google Scholar

[11] Z. I. Alferov, The double heterostructure: The concept and its applications in physics, electronics, and technology (Nobel lecture), ChemPhysChem. 2(8‐9) (2001) 500-513.

DOI: 10.1002/1439-7641(20010917)2:8/9<500::aid-cphc500>3.0.co;2-x

Google Scholar

[12] K. A. Fedorova, Near-IR InAs/GaAs Quantum-Dot Lasers and their Application for Efficient Frequency Conversion, International Conference Laser Optics (ICLO) (2018) (pp.141-141). IEEE.

DOI: 10.1109/lo.2018.8435898

Google Scholar

[13] Z. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim, Solar-energy converters based on pn AlxGal-x As-GaAs heterojunctions, Sov. Phys.-Semicond., 4(12) (1971).

Google Scholar

[14] S. Le Goff, B. Stébé, Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors, Phys. Rev. B, 47(3) (1993) 1383.

DOI: 10.1103/physrevb.47.1383

Google Scholar

[15] M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J. A. Vinasco, D. Laroze, F. Mora-Rey, C. A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattices Microstruct. 159 (2021). 107052.

DOI: 10.1016/j.spmi.2021.107052

Google Scholar

[16] M. Koksal, E. Kilicarslan, H. Sari, I. Sokmen, Effet du champ magnétique sur la susceptibilité diamagnétique des impuretés hydrogénées dans les fils de puits quantiques, Physica B Condens. Matter, 404 (2009) 3850 – 3854.

DOI: 10.1016/j.physb.2009.07.103

Google Scholar

[17] S. M. Arif, A. Bera, M. Ghosh, Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay, Heliyon, 5(1) (2019) e01147.

DOI: 10.1016/j.heliyon.2019.e01147

Google Scholar

[18] L. Belamkadem, O. Mommadi, J. A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C. A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E Low Dimens. Syst. Nanostruct. 129 (2021) 114642.

DOI: 10.1016/j.physe.2021.114642

Google Scholar

[19] E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, P. M. Petroff, Multiexciton spectroscopy of a single self-assembled quantum dot, Phys. Rev. Lett., 80 (1998) 4991–4994.

DOI: 10.1103/physrevlett.80.4991

Google Scholar

[20] J. M. Gerard, B. Gayral, Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17 (1999) (2089).

DOI: 10.1109/50.802999

Google Scholar

[21] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoğlu, A quantum dot single-photon turnstile device. Science. 290 (2000) 2282–2285.

DOI: 10.1126/science.290.5500.2282

Google Scholar

[22] O. Zilberberg, B. Braunecker, D. Loss, Controlled-not gate for multiparticle qubits and topological quantum computation based on parity measurements, Phys. Rev. A. 77 (2008) 012327.

DOI: 10.1103/physreva.77.012327

Google Scholar

[23] C. Bose, C. K. Sarkar, Perturbation calculation of donor states in a spherical quantum dot, Solid-State Electronics, 42(9) (1998) 1661-1663.

DOI: 10.1016/s0038-1101(98)00126-9

Google Scholar

[24] J. W. Brown, H. N. Spector, Hydrogen impurities in quantum well wires, J. Appl. Phys. 59 (1986) 1179–1186.

Google Scholar

[25] W. Xie, Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot, Physica B. 404 (2009) 4142–4145.

DOI: 10.1016/j.physb.2009.07.177

Google Scholar

[26] G. Rezaei, B. Vaseghi, N.A. Doostimotlagh, Linear and nonlinear optical properties of spherical quantum dots: Effects of hydrogenic impurity and conduction band non-parabolicity, Commun. Theor. Phys. 57 (2012) 485–489.

DOI: 10.1088/0253-6102/57/3/24

Google Scholar

[27] E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots, Superlattices Microstruct. 107142 (2022) 0749-6036.

DOI: 10.1016/j.spmi.2021.107142

Google Scholar

[28] Y. Chrafih, K. Rahmani, M. Khenfouch, I. Zorkani, GaAlAs/GaAs cubical inhomogeneous quantum dot (core/shell) under external excitations: the photoionization cross-section of donor impurity with the polaronic effect, J. Nanophotonics 14 (2020) 016001.

DOI: 10.1117/1.jnp.14.016001

Google Scholar

[29] E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos and C.A. Duque, Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field,, Philos. Mag. (Abingdon) 97 (18) (2017) 1445-1463.

DOI: 10.1080/14786435.2017.1302613

Google Scholar

[30] M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In,Ga)N/GaN multilayer cylindrical quantum dots, Superlattices Microstruct. 107146, (2022) 0749-6036.

DOI: 10.1016/j.physe.2022.115450

Google Scholar

[31] A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A. 127.12 (2021) 1-9.

DOI: 10.1007/s00339-021-05055-x

Google Scholar

[32] A.Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation, Superlattices Microstruct. 69 (2014) 38-52.

DOI: 10.1016/j.spmi.2014.01.011

Google Scholar

[33] H. Satori, A Sali, The finite element simulation for the shallow impurity in quantum dots, Physica E Low Dimens. Syst. Nanostruct. 48 (2013) 171-175.

DOI: 10.1016/j.physe.2012.12.010

Google Scholar

[34] V. Holovatsky, M. Chubrey, O. Voitsekhivska, Effect of electric field on photoionisation cross-section of impurity in multilayered quantum dot Superlattice. Microstruct. 145 (2020) 106642.

DOI: 10.1016/j.spmi.2020.106642

Google Scholar

[35] S. Ortakaya, M. Kirak, A. Guldeste, Size-dependent electronic and optical properties in zinc-blende InGaN/GaN multilayer spherical quantum dot, J. Nonlinear Opt. Phys. Mater. 26 (2017)1–13.

DOI: 10.1142/s0218863517500357

Google Scholar

[36] G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132.

DOI: 10.1016/j.physe.2014.10.011

Google Scholar

[37] A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, P. M. Petroff, Spectroscopy of nanoscopic semiconductor rings, Phys. Rev. Lett., 84 (2000) 2223.

DOI: 10.1103/physrevlett.84.2223

Google Scholar

[38] S. N. Mohajer, A. Ibral, J. El Khamkhami, E. M. Assaid, Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle, Physica B Condens. Matter. 497 (2016) 51-58.

DOI: 10.1016/j.physb.2016.05.028

Google Scholar