Study the Influence of CNTs Deposited by Laser on the Surface of Al 2024 Alloy

Article Preview

Abstract:

Laser powder deposition (LPD) has been relied on to improve the surface properties of materials. Nowadays, an excellent reinforcement for aluminum and aluminum alloys could be carbon nanotubes (CNTs). The surface of aluminum alloy 2024 (Al Cu4Mg1) is coated with double-walled and multiwalled carbon nanotubes (DWCNTs, MWCNTs) using laser preplaced powder deposition with pulsed Nd:YAG to evaluate its effect on enhancing hardness and corrosion resistance. The laser power, pulse duration, scanning speed, and frequency, were controlled to complete this task. Since the best DWCNT deposited layer was obtained at the optimal process conditions, the Vickers micro-hardness and corrosion resistance of the coated Al 2024 surface improved in the readouts. The results showed that DWCNT improved specific essential surface attributes, namely hardness, abrasive wear resistance, and corrosion resistance, more than MWCNTs, according to the findings. Although MWCNTs have less penetration, their dispersion on the surface is superior to DWCNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-78

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ahmad, Z., Recent trends in processing and degradation of aluminum alloys, InTech Janeza Trdine 9, 51000 Rijeka, Croatia, (2011) 115-152.

Google Scholar

[2] Tung, S.C. McMillan, M.L., Automotive tribology overview of current advances and challenges for the future, Tribology International 37, (2004) 517–536.

DOI: 10.1016/j.triboint.2004.01.013

Google Scholar

[3] Omrani, E. Moghadam, A.D. Menezes, P.L. Rohatgi, P.K., New emerging self-lubricating metal matrix composites for tribological applications, Ecotribology, Springer, (2016) 63-103.

DOI: 10.1007/978-3-319-24007-7_3

Google Scholar

[4] Mascagni, D. B. T. de Souza, M. E. P. Freire, C. M. de A. Silva, S. L. Rangel, R. de C. C. da Cruz, N. C. Rangel, E. C., Corrosion resistance of 2024 aluminum alloy coated with plasma deposited a-C:H:Si:O films, Materials Research 17(6), (2014) 1449-1465.

DOI: 10.1590/1516-1439.289014

Google Scholar

[5] Rotshtein, V. P. Shulov, V. A., Surface modification and alloying of aluminum and titanium alloys with low-energy, high-current electron beams, Journal of Metallurgy, (2011) 1-15.

DOI: 10.1155/2011/673685

Google Scholar

[6] Bhat, K. U. Panemangalore, D. B. Kuruveri, S. B. John, M. Menezes, P. L., Surface modification of 6xxx series aluminum alloys, Coatings, 12, (2022) 180.

DOI: 10.3390/coatings12020180

Google Scholar

[7] Tadahiro, W. Junsuke, F., Surface modification of aluminum alloys, Materials Science Forum, 519-521 (2006) 765-770.

Google Scholar

[8] Yan, P. Zou, J. Zhang, C. Grosdidier, T., Surface modifications of a cold rolled 2024 Al alloy by high current pulsed electron beams, Applied Surface Science, 504, (2020) 144382.

DOI: 10.1016/j.apsusc.2019.144382

Google Scholar

[9] Malik, J. Toor, I. H. Ahmed, W. H. Gasem, Z. M. Habib, M. A. Ben-Mansour, R. Badr, H.M., Evaluating the effect of hardness on erosion characteristics of aluminum and steels, Journal of Materials Engineering and Performance, (2014) 1059-9495.

DOI: 10.1007/s11665-014-1004-x

Google Scholar

[10] Yilbas, B.S. Akhtar, S. Karatas, C., Laser surface treatment of pre-prepared Rene 41 surface, Optics and lasers in engineering, 50/11, (2012) 1533–1537.

DOI: 10.1016/j.optlaseng.2012.06.006

Google Scholar

[11] Hussein, H.T. Kadhim, A. Al-Amiery, A.A. Kadhum, A.H. Mohamad, A.B. Enhancement of the wear resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment, The Scientific World Journal, (2014).

DOI: 10.1155/2014/842062

Google Scholar

[12] Zhong, M. Liu, W., Laser surface cladding: the state of the art and challenges, J. Mechanical Engineering Science, Proc. IMechE, 224/C, (2009) 1041-160.

Google Scholar

[13] Yuan, X. Huang, S., Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering, Journal of Alloys and Compounds, 620, (2015) 80–86.

DOI: 10.1016/j.jallcom.2014.09.128

Google Scholar

[14] Chen, Y. Lu, F. Zhang, K. Nie, P. Hosseini, S.R. E. Feng, K. Li, Z., Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718, Carbon 107, (2016) 361-370.

DOI: 10.1016/j.carbon.2016.06.014

Google Scholar

[15] Zanzarin, S., Laser cladding with metallic powders, Doctoral thesis, University of Trento/Department of Industrial Engineering, (2015).

Google Scholar

[16] Ardila-Rodriguez, L.A. Menezes, B.R.C. Pereira, L.A. Takahashi, R.J. Oliveira, A.C. Travessa D.N., Surface modification of aluminum alloys with carbon nanotubes by laser surface melting, Surface and Coatings Technology, 377, (2019) 124930.

DOI: 10.1016/j.surfcoat.2019.124930

Google Scholar

[17] Feng, X. Wang, H. Liu, X. Wang, C. Cui, H. Song, Q. Huang, K. Li, N. Jiang, X., Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding, Surface and Coatings Technology, 412, (2021) 1269762021.

DOI: 10.1016/j.surfcoat.2021.126976

Google Scholar

[18] Fraczek-Szczypta, A. Dlugon, E. Weselucha-Birczynska, A. Nocun, M. Blazewicz, M., Multi walled carbon nanotubes deposited on metal substrate using EPD technique, A spectroscopic study, Journal of Molecular Structure 1040, (2013) 238–245.

DOI: 10.1016/j.molstruc.2013.03.010

Google Scholar

[19] Gohardani, O. Elola, M.C. Elizetxea, C., Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences, Progress in Aerospace Sciences, 70, (2014) 42–68.

DOI: 10.1016/j.paerosci.2014.05.002

Google Scholar

[20] Benedyk, J., Magnesium advances in automotive applications, Light Metal Age, 63 (3), (2005) 36-38.

Google Scholar

[21] Haggenmueller, R. Zhou, W. Fischer, J.E. Winey, K.I., Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes, J. Nanosci. Nanotechnol., 3 (1–2), (2003) 105–110.

DOI: 10.1166/jnn.2003.173

Google Scholar

[22] Gan, W. Okamoto, K. Hiron, S. Chung, K. Kim, C. Wagnoer, R.H., Properties of friction-stir welded aluminum alloys 6111 and 5083, J. Eng. Mater. Technol., 130 (3), (2008) 031007.

DOI: 10.1115/1.2931143

Google Scholar

[23] Wang, Z. Ciselli, P. Peijs, T., The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented polyvinyl alcohol tapes, Nanotechnology, 18 (45), )2007) 455709.

DOI: 10.1088/0957-4484/18/45/455709

Google Scholar

[24] Pipes, R.B. Hubert, P., Helical carbon nanotube arrays: mechanical properties, Composites Science and Technology 62, (2002) 419–428.

DOI: 10.1016/s0266-3538(02)00002-7

Google Scholar

[25] Lau, K.T. Hui, D., The revolutionary creation of new advanced materials-carbon nanotubes composites, Composites Part B 33, (2002) 263-277.

DOI: 10.1016/s1359-8368(02)00012-4

Google Scholar

[26] Mauron, P. Emmenegger, C. Zuttel, A. Nutzenadel, C. Sudan, P. Schlapbach, L., Synthesis of oriented nanotube films by chemical vapor deposition, Carbon 40, (2002) 1339–1344.

DOI: 10.1016/s0008-6223(01)00295-0

Google Scholar

[27] Laha, T. Agarwal, A., Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite, Materials Science and Engineering A 480, (2008) 323–332.

DOI: 10.1016/j.msea.2007.07.047

Google Scholar

[28] Mamalis, A.G. Vogtländer, L.O.G. Markopoulos, A., Nanotechnology and nanostructured materials: trends in carbon nanotubes, Precision Engineering 28, (2004) 16–30.

DOI: 10.1016/j.precisioneng.2002.11.002

Google Scholar

[29] Deng, C.F. Ma, Y.X. Zhang, P. Zhang, X. Wang, D.Z., Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater Lett, 62 (15), (2008) 2301- 2303.

DOI: 10.1016/j.matlet.2007.11.086

Google Scholar

[30] George, R. Kashyap, K.T. Rahul, R. Yamdagni, S., Strengthening in carbon nanotube/ aluminum (CNT/Al) composites, Scr Mater, 53(10), (2005) 1159-1163.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[31] Paradise, M. Goswami, T., Carbon nanotubes - production and industrial applications, Mater, 28 (5), (2007) 1477–1489.

Google Scholar

[32] Bakshi, S.R. Lahiri, D. Agarwal, A., Carbon nanotube reinforced metal matrix composites - a review, Int. Mater. Rev., 55 (1), (2010) 41–64.

DOI: 10.1179/095066009x12572530170543

Google Scholar

[33] Hwang, J.Y. Neira, A. Scharf, T.W. Tiley, J. Banerjee, R., Laser-deposited carbon nanotube reinforced nickel matrix composites, Scripta Materialia 59, (2008) 487–490.

DOI: 10.1016/j.scriptamat.2008.04.032

Google Scholar

[34] Cha, S. I. Arshad, S.N. Mo, C.B. Hong, S.H., Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mat., Vol. 17, (2005) 1377-1381.

DOI: 10.1002/adma.200401933

Google Scholar

[35] Laha, T. Kuchibhatla, S. Seal, S. Li, W. Agarwal, A., Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced Aluminum nanocomposite, Acta Mater, 55 (3), (2007) 1059–66.

DOI: 10.1016/j.actamat.2006.09.025

Google Scholar

[36] Yamanaka, S. Kawasaki, A. Sakamoto, H. Mekuchi, Y. Kuno, M. Tsukada, T., Thermal Properties of Carbon Nanotube/Nickel Composites Fabricated by Hetero Aggregation, Jpn. Inst. Met. 70 (8), (2006) 630-633.

DOI: 10.2320/jinstmet.70.630

Google Scholar

[37] Bakshi, S.R. Tercero, J.E. Agarwal, A., Synthesis and characterization of multiwalled carbon nanotube reinforced ultrahigh molecular weight polyethylene composite by electrostatic spraying technique, Composites: Part A 38, (2007) 2493–2499.

DOI: 10.1016/j.compositesa.2007.08.004

Google Scholar

[38] Ci, L. Ryu, Z. Jin-Phillipp, N.Y. Ruhle, M., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Materialia 54, (2006) 5367-5375.

DOI: 10.1016/j.actamat.2006.06.031

Google Scholar

[39] Chunfeng, D. Xuexi, Z. Dezun, W., Chemical stability of carbon nanotubes in the 2024Al matrix, Materials Letters 61, (2007) 904–907.

DOI: 10.1016/j.matlet.2006.06.010

Google Scholar

[40] Păvălache, A.C. Voiculescu, I. Iordăchescu, D. Vasile, G. Elena–Manuela, S. Apostol, G., Obtaining of metal matrix composites layers by laser cladding, Metalurgia International vol.XVI special issue, (2011).

Google Scholar

[41] Hofmeister, W. Costa, L. Rajput, D. Lansford, K., Cast carbide-metal composite components via laser based solid freeform fabrication, ICALEO, LIA, (2007) 406.

DOI: 10.2351/1.5061070

Google Scholar

[42] Xiong, Y. Smugeresky, J.E. Ajdelsztajn, L. Schoenung, J.M., Fabrication of WC-co cermets by laser engineered net shaping, Materials Science and Engineering: A, Vol. 493 Nos 1/2, (2008) 261-6.

DOI: 10.1016/j.msea.2007.05.125

Google Scholar

[43] Wu, P. Du, H.M. Chen, X.L. Li, Z.Q. Bai, H.L. Jiang, E.Y., Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings, Wear, Vol. 257 Nos 1/2, (2004) 142-7.

DOI: 10.1016/j.wear.2003.10.019

Google Scholar

[44] Rajput, D. Lansford, K. Costa, L. Hofmeister, W., Molybdenum-on-chromium dual coating on steel, Surface and Coatings Technology, Vol. 203 No. 9, (2009) 1281-7.

DOI: 10.1016/j.surfcoat.2008.10.029

Google Scholar

[45] Dubourg, L. Ursescu, D. Hlawka, F. Cornet, A., Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties, Wear, Vol. 258 Nos 11/12, (2005) 1745-54.

DOI: 10.1016/j.wear.2004.12.010

Google Scholar

[46] Jiang, W.H. Kovacevic, R., Laser deposited TiC/ H13 tool steel composite coatings and their erosion resistance, Journal of Materials Processing Technology, Vol. 186 Nos 1/3, (2007) 331-8.

DOI: 10.1016/j.jmatprotec.2006.12.053

Google Scholar

[47] Zhao, G. Cho, C. Do Kim, J., Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process, Int. J. Mech. Sci. 45 (5), (2003) 777–796.

DOI: 10.1016/s0020-7403(03)00140-1

Google Scholar

[48] Hu, Z. Chen, F. Xu, J. Ma, Z. Guo, H. Chen, C. Nian, Q. Wang, X. Zhang, M., Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: microstructure and mechanical properties, Compos. Part B Eng, 134, (2018) 133–140.

DOI: 10.1016/j.compositesb.2017.09.069

Google Scholar

[49] ASM International Handbook, Vol 02 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (1990).

DOI: 10.31399/asm.hb.v02.9781627081627

Google Scholar

[50] Berkmanns, J. Faerber, M., Laser basics, BOC, (2010).

Google Scholar

[51] Pellone, L. Inamke, G. Hong, K. Shin, Y., Effects of interface gap and shielding gas on the quality of alloy AA6061 fiber laser lap weldings, Journal of Materials Processing Tech. 268, (2019) 201–212.

DOI: 10.1016/j.jmatprotec.2019.01.025

Google Scholar

[52] Metals Handbook Ninth Edition; American Society for Metals, Metals Park, OH, (1985) 354-355.

Google Scholar

[53] P. Walker, W.H. Tarn, Handbook of metal etchants, CRC Press LLC, (1991).

Google Scholar