[1]
Ahmad, Z., Recent trends in processing and degradation of aluminum alloys, InTech Janeza Trdine 9, 51000 Rijeka, Croatia, (2011) 115-152.
Google Scholar
[2]
Tung, S.C. McMillan, M.L., Automotive tribology overview of current advances and challenges for the future, Tribology International 37, (2004) 517–536.
DOI: 10.1016/j.triboint.2004.01.013
Google Scholar
[3]
Omrani, E. Moghadam, A.D. Menezes, P.L. Rohatgi, P.K., New emerging self-lubricating metal matrix composites for tribological applications, Ecotribology, Springer, (2016) 63-103.
DOI: 10.1007/978-3-319-24007-7_3
Google Scholar
[4]
Mascagni, D. B. T. de Souza, M. E. P. Freire, C. M. de A. Silva, S. L. Rangel, R. de C. C. da Cruz, N. C. Rangel, E. C., Corrosion resistance of 2024 aluminum alloy coated with plasma deposited a-C:H:Si:O films, Materials Research 17(6), (2014) 1449-1465.
DOI: 10.1590/1516-1439.289014
Google Scholar
[5]
Rotshtein, V. P. Shulov, V. A., Surface modification and alloying of aluminum and titanium alloys with low-energy, high-current electron beams, Journal of Metallurgy, (2011) 1-15.
DOI: 10.1155/2011/673685
Google Scholar
[6]
Bhat, K. U. Panemangalore, D. B. Kuruveri, S. B. John, M. Menezes, P. L., Surface modification of 6xxx series aluminum alloys, Coatings, 12, (2022) 180.
DOI: 10.3390/coatings12020180
Google Scholar
[7]
Tadahiro, W. Junsuke, F., Surface modification of aluminum alloys, Materials Science Forum, 519-521 (2006) 765-770.
Google Scholar
[8]
Yan, P. Zou, J. Zhang, C. Grosdidier, T., Surface modifications of a cold rolled 2024 Al alloy by high current pulsed electron beams, Applied Surface Science, 504, (2020) 144382.
DOI: 10.1016/j.apsusc.2019.144382
Google Scholar
[9]
Malik, J. Toor, I. H. Ahmed, W. H. Gasem, Z. M. Habib, M. A. Ben-Mansour, R. Badr, H.M., Evaluating the effect of hardness on erosion characteristics of aluminum and steels, Journal of Materials Engineering and Performance, (2014) 1059-9495.
DOI: 10.1007/s11665-014-1004-x
Google Scholar
[10]
Yilbas, B.S. Akhtar, S. Karatas, C., Laser surface treatment of pre-prepared Rene 41 surface, Optics and lasers in engineering, 50/11, (2012) 1533–1537.
DOI: 10.1016/j.optlaseng.2012.06.006
Google Scholar
[11]
Hussein, H.T. Kadhim, A. Al-Amiery, A.A. Kadhum, A.H. Mohamad, A.B. Enhancement of the wear resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment, The Scientific World Journal, (2014).
DOI: 10.1155/2014/842062
Google Scholar
[12]
Zhong, M. Liu, W., Laser surface cladding: the state of the art and challenges, J. Mechanical Engineering Science, Proc. IMechE, 224/C, (2009) 1041-160.
Google Scholar
[13]
Yuan, X. Huang, S., Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering, Journal of Alloys and Compounds, 620, (2015) 80–86.
DOI: 10.1016/j.jallcom.2014.09.128
Google Scholar
[14]
Chen, Y. Lu, F. Zhang, K. Nie, P. Hosseini, S.R. E. Feng, K. Li, Z., Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718, Carbon 107, (2016) 361-370.
DOI: 10.1016/j.carbon.2016.06.014
Google Scholar
[15]
Zanzarin, S., Laser cladding with metallic powders, Doctoral thesis, University of Trento/Department of Industrial Engineering, (2015).
Google Scholar
[16]
Ardila-Rodriguez, L.A. Menezes, B.R.C. Pereira, L.A. Takahashi, R.J. Oliveira, A.C. Travessa D.N., Surface modification of aluminum alloys with carbon nanotubes by laser surface melting, Surface and Coatings Technology, 377, (2019) 124930.
DOI: 10.1016/j.surfcoat.2019.124930
Google Scholar
[17]
Feng, X. Wang, H. Liu, X. Wang, C. Cui, H. Song, Q. Huang, K. Li, N. Jiang, X., Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding, Surface and Coatings Technology, 412, (2021) 1269762021.
DOI: 10.1016/j.surfcoat.2021.126976
Google Scholar
[18]
Fraczek-Szczypta, A. Dlugon, E. Weselucha-Birczynska, A. Nocun, M. Blazewicz, M., Multi walled carbon nanotubes deposited on metal substrate using EPD technique, A spectroscopic study, Journal of Molecular Structure 1040, (2013) 238–245.
DOI: 10.1016/j.molstruc.2013.03.010
Google Scholar
[19]
Gohardani, O. Elola, M.C. Elizetxea, C., Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences, Progress in Aerospace Sciences, 70, (2014) 42–68.
DOI: 10.1016/j.paerosci.2014.05.002
Google Scholar
[20]
Benedyk, J., Magnesium advances in automotive applications, Light Metal Age, 63 (3), (2005) 36-38.
Google Scholar
[21]
Haggenmueller, R. Zhou, W. Fischer, J.E. Winey, K.I., Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes, J. Nanosci. Nanotechnol., 3 (1–2), (2003) 105–110.
DOI: 10.1166/jnn.2003.173
Google Scholar
[22]
Gan, W. Okamoto, K. Hiron, S. Chung, K. Kim, C. Wagnoer, R.H., Properties of friction-stir welded aluminum alloys 6111 and 5083, J. Eng. Mater. Technol., 130 (3), (2008) 031007.
DOI: 10.1115/1.2931143
Google Scholar
[23]
Wang, Z. Ciselli, P. Peijs, T., The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented polyvinyl alcohol tapes, Nanotechnology, 18 (45), )2007) 455709.
DOI: 10.1088/0957-4484/18/45/455709
Google Scholar
[24]
Pipes, R.B. Hubert, P., Helical carbon nanotube arrays: mechanical properties, Composites Science and Technology 62, (2002) 419–428.
DOI: 10.1016/s0266-3538(02)00002-7
Google Scholar
[25]
Lau, K.T. Hui, D., The revolutionary creation of new advanced materials-carbon nanotubes composites, Composites Part B 33, (2002) 263-277.
DOI: 10.1016/s1359-8368(02)00012-4
Google Scholar
[26]
Mauron, P. Emmenegger, C. Zuttel, A. Nutzenadel, C. Sudan, P. Schlapbach, L., Synthesis of oriented nanotube films by chemical vapor deposition, Carbon 40, (2002) 1339–1344.
DOI: 10.1016/s0008-6223(01)00295-0
Google Scholar
[27]
Laha, T. Agarwal, A., Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite, Materials Science and Engineering A 480, (2008) 323–332.
DOI: 10.1016/j.msea.2007.07.047
Google Scholar
[28]
Mamalis, A.G. Vogtländer, L.O.G. Markopoulos, A., Nanotechnology and nanostructured materials: trends in carbon nanotubes, Precision Engineering 28, (2004) 16–30.
DOI: 10.1016/j.precisioneng.2002.11.002
Google Scholar
[29]
Deng, C.F. Ma, Y.X. Zhang, P. Zhang, X. Wang, D.Z., Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater Lett, 62 (15), (2008) 2301- 2303.
DOI: 10.1016/j.matlet.2007.11.086
Google Scholar
[30]
George, R. Kashyap, K.T. Rahul, R. Yamdagni, S., Strengthening in carbon nanotube/ aluminum (CNT/Al) composites, Scr Mater, 53(10), (2005) 1159-1163.
DOI: 10.1016/j.scriptamat.2005.07.022
Google Scholar
[31]
Paradise, M. Goswami, T., Carbon nanotubes - production and industrial applications, Mater, 28 (5), (2007) 1477–1489.
Google Scholar
[32]
Bakshi, S.R. Lahiri, D. Agarwal, A., Carbon nanotube reinforced metal matrix composites - a review, Int. Mater. Rev., 55 (1), (2010) 41–64.
DOI: 10.1179/095066009x12572530170543
Google Scholar
[33]
Hwang, J.Y. Neira, A. Scharf, T.W. Tiley, J. Banerjee, R., Laser-deposited carbon nanotube reinforced nickel matrix composites, Scripta Materialia 59, (2008) 487–490.
DOI: 10.1016/j.scriptamat.2008.04.032
Google Scholar
[34]
Cha, S. I. Arshad, S.N. Mo, C.B. Hong, S.H., Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mat., Vol. 17, (2005) 1377-1381.
DOI: 10.1002/adma.200401933
Google Scholar
[35]
Laha, T. Kuchibhatla, S. Seal, S. Li, W. Agarwal, A., Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced Aluminum nanocomposite, Acta Mater, 55 (3), (2007) 1059–66.
DOI: 10.1016/j.actamat.2006.09.025
Google Scholar
[36]
Yamanaka, S. Kawasaki, A. Sakamoto, H. Mekuchi, Y. Kuno, M. Tsukada, T., Thermal Properties of Carbon Nanotube/Nickel Composites Fabricated by Hetero Aggregation, Jpn. Inst. Met. 70 (8), (2006) 630-633.
DOI: 10.2320/jinstmet.70.630
Google Scholar
[37]
Bakshi, S.R. Tercero, J.E. Agarwal, A., Synthesis and characterization of multiwalled carbon nanotube reinforced ultrahigh molecular weight polyethylene composite by electrostatic spraying technique, Composites: Part A 38, (2007) 2493–2499.
DOI: 10.1016/j.compositesa.2007.08.004
Google Scholar
[38]
Ci, L. Ryu, Z. Jin-Phillipp, N.Y. Ruhle, M., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Materialia 54, (2006) 5367-5375.
DOI: 10.1016/j.actamat.2006.06.031
Google Scholar
[39]
Chunfeng, D. Xuexi, Z. Dezun, W., Chemical stability of carbon nanotubes in the 2024Al matrix, Materials Letters 61, (2007) 904–907.
DOI: 10.1016/j.matlet.2006.06.010
Google Scholar
[40]
Păvălache, A.C. Voiculescu, I. Iordăchescu, D. Vasile, G. Elena–Manuela, S. Apostol, G., Obtaining of metal matrix composites layers by laser cladding, Metalurgia International vol.XVI special issue, (2011).
Google Scholar
[41]
Hofmeister, W. Costa, L. Rajput, D. Lansford, K., Cast carbide-metal composite components via laser based solid freeform fabrication, ICALEO, LIA, (2007) 406.
DOI: 10.2351/1.5061070
Google Scholar
[42]
Xiong, Y. Smugeresky, J.E. Ajdelsztajn, L. Schoenung, J.M., Fabrication of WC-co cermets by laser engineered net shaping, Materials Science and Engineering: A, Vol. 493 Nos 1/2, (2008) 261-6.
DOI: 10.1016/j.msea.2007.05.125
Google Scholar
[43]
Wu, P. Du, H.M. Chen, X.L. Li, Z.Q. Bai, H.L. Jiang, E.Y., Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings, Wear, Vol. 257 Nos 1/2, (2004) 142-7.
DOI: 10.1016/j.wear.2003.10.019
Google Scholar
[44]
Rajput, D. Lansford, K. Costa, L. Hofmeister, W., Molybdenum-on-chromium dual coating on steel, Surface and Coatings Technology, Vol. 203 No. 9, (2009) 1281-7.
DOI: 10.1016/j.surfcoat.2008.10.029
Google Scholar
[45]
Dubourg, L. Ursescu, D. Hlawka, F. Cornet, A., Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties, Wear, Vol. 258 Nos 11/12, (2005) 1745-54.
DOI: 10.1016/j.wear.2004.12.010
Google Scholar
[46]
Jiang, W.H. Kovacevic, R., Laser deposited TiC/ H13 tool steel composite coatings and their erosion resistance, Journal of Materials Processing Technology, Vol. 186 Nos 1/3, (2007) 331-8.
DOI: 10.1016/j.jmatprotec.2006.12.053
Google Scholar
[47]
Zhao, G. Cho, C. Do Kim, J., Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process, Int. J. Mech. Sci. 45 (5), (2003) 777–796.
DOI: 10.1016/s0020-7403(03)00140-1
Google Scholar
[48]
Hu, Z. Chen, F. Xu, J. Ma, Z. Guo, H. Chen, C. Nian, Q. Wang, X. Zhang, M., Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: microstructure and mechanical properties, Compos. Part B Eng, 134, (2018) 133–140.
DOI: 10.1016/j.compositesb.2017.09.069
Google Scholar
[49]
ASM International Handbook, Vol 02 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (1990).
DOI: 10.31399/asm.hb.v02.9781627081627
Google Scholar
[50]
Berkmanns, J. Faerber, M., Laser basics, BOC, (2010).
Google Scholar
[51]
Pellone, L. Inamke, G. Hong, K. Shin, Y., Effects of interface gap and shielding gas on the quality of alloy AA6061 fiber laser lap weldings, Journal of Materials Processing Tech. 268, (2019) 201–212.
DOI: 10.1016/j.jmatprotec.2019.01.025
Google Scholar
[52]
Metals Handbook Ninth Edition; American Society for Metals, Metals Park, OH, (1985) 354-355.
Google Scholar
[53]
P. Walker, W.H. Tarn, Handbook of metal etchants, CRC Press LLC, (1991).
Google Scholar