One-Dimensional Photonic Serial Asymmetric Loops Structure Containing Three Defects

Article Preview

Abstract:

We study in this work, the occurrence of defects modes in the transmission spectrum and the band structure of a perfect photonic asymmetric serial loops structure (ASLS) utilized for narrow-band filtering. The perfect structure presents large photonic bandgaps that result from the modes of the loops resonances and the system periodicity. Besides that, the existence of defects within this perfect ASLS, whether at the segment or loop level, or both of them, causes the appearance of two, three, or four defect modes within gaps with good transmission rates and high-quality factors. These defects modes are extremely sensitive to changes in structural parameters. This system can be used to filter or guide the incoming electromagnetic waves. The interface response theory has been used to accomplish the analytical calculation. Green's function of the full system is determinated using this method. It allows us to calculate the dispersion relation and the transmission rate. Therefore, this paper can provide ideas for the design of multi-channel tunable filter using for frequency division multiplexing and microwave and signal processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-37

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.K. Timoshenko, V.A. Shunina, Y.V. Smirnov, O.V. Kazarina, Light propagation in one-dimensional photonic finite systems (Si/a-SiO2) m with defects, Nanophotonic Materials. 7030 (2008) 7073018.

DOI: 10.1117/12.803033

Google Scholar

[2] Y. Ben-Ali, Z. Tahri, A. Bouzidi, F. Jeffali, D. Bria, M. Azizi, A. Khettabi, A. Nougaoui, Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects, JMES. 8 (2017) 870-876.

Google Scholar

[3] Y. Errouas, Y. Ben-Ali, I. El kadmiri, Z. Tahri, D. Bria, Propagation of electromagnetic waves in one dimensional symmetric and asymmetric Comb-like photonic structure containing defects, Materials Today: Proceedings, 31 (2020) pp. S16-S23.

DOI: 10.1016/j.matpr.2020.05.038

Google Scholar

[4] K. J. Lee, J.W. Wu, K. Kim, Defect modes in a one-dimensional photonic crystal with a chiral defect layer. Optical Materials Express. 4 (2014) 2542-2550.

DOI: 10.1364/ome.4.002542

Google Scholar

[5] J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, A. Akjouj, J. Zemmouri, Defect modes in one-dimensional comblike photonic waveguides, Physical Review B. 59 (1999) 13446–13452.

DOI: 10.1103/physrevb.59.13446

Google Scholar

[6] Y. Nie, K. Huang, J. Yang, L. Cao, L. Cheng, Q. Wang, L. Heng, A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation system, IEEE Sensors Journal. 20 (2020) 14639-14645.

DOI: 10.1109/jsen.2020.3006220

Google Scholar

[7] A. Bouzidi, D. Bria, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A tiny gas-sensor system based on 1D photonic crystal, Journal of Physics D, Applied Physics. 48 (2015) 495102.

DOI: 10.1088/0022-3727/48/49/495102

Google Scholar

[8] A.H. Aly, Z.A. Zaky, S.A. Shalaby, A.M. Ahmed, D. Vigneswaran, Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor, PhysicaScripta. 95 (2020) 035510.

DOI: 10.1088/1402-4896/ab53f5

Google Scholar

[9] M. Bayindir, B. Temelkuran, E. Ozbay, Photonic-crystal-based beam splitters, Applied Physics Letters. 77(2000) 3902–3904.

DOI: 10.1063/1.1332821

Google Scholar

[10] S. Fan, S.G. Johnson, J.D. Joannopoulos, Waveguide branches in photonic crystals J. Opt.Soc. Amer. B. 18 (2001) 162–165.

Google Scholar

[11] G. Ma, J. Shen, Z. Zhang, Z. Hua, S.H. Tang, Ultrafast all-optical switching in one-dimensional photonic crystal with two defects. Optics Express 14 (2006) 858–865.

DOI: 10.1364/opex.14.000858

Google Scholar

[12] Q. Zhu, Y. Zhang, Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate, Optik. 120 (2009) 195–198.

DOI: 10.1016/j.ijleo.2007.06.024

Google Scholar

[13] H. Al-Wahsh, A. Mir, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, Magneto-transport in asymmetric serial loop structures, Physics Letters A. 291(2001) 333–337.

DOI: 10.1016/s0375-9601(01)00737-x

Google Scholar

[14] J. Vasseur, A. Akjouj, L. Dobrzynski, B. Djafari-Rouhani, E.H. El Boudouti, Photon, electron, magnon, phonon and plasmon mono-mode circuits, Surface Science Reports. 54 (2004)1–156.

DOI: 10.1016/j.surfrep.2004.04.001

Google Scholar

[15] S.K. Srivasta, U.C. Srivastava, S.P. Ojha, Photonic band structure of quasi OF 1D metallic serial loop structure, Journal of Ovonic Research. 6 (2010) 201-210.

Google Scholar

[16] W. Tan, Z.G. Wang, H. Chen, Photonic band gap of loop structure containing negative-index materials, Physical Review E. 77 (2008) 026603.

DOI: 10.1103/physreve.77.026603

Google Scholar

[17] A. Mir, A. Akjouj, J.O. Vasseur, B. Djafari-Rouhani, N. Fettouhi, E.H. E.Boudouti, J. Zemmouri, Observation of large photonic band gaps and defect modes in one-dimensional networked waveguides, Journal of Physics: Condensed Matter. 15 (2003) 1593–1598.

DOI: 10.1088/0953-8984/15/10/308

Google Scholar

[18] H. Aynaou, E.H. El Boudouti, Y. El Hassouani, A. Akjouj, B. Djafari-Rouhani, J. Vasseur, V.R. Velasco, Propagation and localization of electromagnetic waves in quasiperiodic serial loop structures, Physical Review E. 72 (2005) 056601.

DOI: 10.1103/physreve.72.056601

Google Scholar

[19] J. Zi, J. Wan, C. Zhang, Large frequency range of negligible transmission in one-dimensional photonic quantum well structures, Applied Physics Letters. 73 (1998) 2084–(2086).

DOI: 10.1063/1.122385

Google Scholar

[20] E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J.O. Vasseur, J. Zemmouri, Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures, Journal of Applied Physics. 95 (2004) 1102–1113.

DOI: 10.1063/1.1633983

Google Scholar

[21] I. El kadmiri, F.Z. Elamri, Y. Ben Ali, A. Khaled, A. Kerkour El Miad, D. Bria, Acoustical multi-frequency filtering by a defective asymmetric phononic serial loop structure, AIP Advances. 10 (2020) 075313.

DOI: 10.1063/5.0011208

Google Scholar

[22] A. Mir, H.A. Wahsh, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, J.O. Vasseur, Magnonic spectral gaps and discrete transmission in serial loop structures, Journal of Physics: Condensed Matter. 14(2002) 637–655.

DOI: 10.1088/0953-8984/14/3/331

Google Scholar

[23] I. kadmiri, F.Z. Elamri, Y. Ben-Ali, A. Khaled, A.K.E. Miad, D. Bria, Induced guided acoustic waves by the presence of a defective guide in one dimensional asymmetric loop phononic crystal, In: International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE. 2020. pp.1-8.

DOI: 10.1109/iscv49265.2020.9204326

Google Scholar

[24] M. El-Aouni, Y. Ben-Ali, I. El Kadmiri, Z. Tahri, D. Bria, Electromagnetic Multi-Frequencies Filtering by a Defective Asymmetric Photonic Serial Loops Structure, In : International Conference on Electronic Engineering and Renewable Energy. Springer, Singapore, 2020. pp.195-202.

DOI: 10.1007/978-981-15-6259-4_19

Google Scholar

[25] Y. EL Hassouani, Thesis in cotutelle, PhD Thesis, University of Lille 1, (2007).

Google Scholar

[26] Y. Ben-Ali, I. El kadmiri,Z. Tahri, D. Bria, High Quality Factor Microwave Multichannel Filter Based on Multi-Defectives Resonators Inserted in Periodic Star Waveguides Structure, Progress In Electromagnetics Research C. 104 (2020) 253-268.

DOI: 10.2528/pierc20050202

Google Scholar

[27] Y. Ben-Ali, Z. Tahri, A. Ouariach, D. Bria, Double frequency filtering by photonic comb-like, In:International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2018. pp.1-6.

DOI: 10.1109/isaect.2018.8618798

Google Scholar

[28] Y. Ben-Ali, Z. Tahri, D. Bria, Defects modes in one-dimensional photonic filter star waveguide structure, Materials Today: Proceedings. 27 (2020) 3042-3050.

DOI: 10.1016/j.matpr.2020.03.525

Google Scholar

[29] J. Moon, Y.S. Lim, S. Yoon, W. Choi, Single-shot multi-depth full-field optical coherence tomography using spatial frequency division multiplexing, Optics Express. 29 (2021) 7060-7069.

DOI: 10.1364/oe.417950

Google Scholar