First-Principle Study of the Thermodynamic Properties of VSb2 Compound as a Function of Pressure and Temperature

Article Preview

Abstract:

In our paper, we interested in the study of the thermodynamic properties of the compound VSb2. For this, we used the full potential linearized augmented plane wave (FP-LAPW) method implemented in the Wien2k code. The latter is based on the density functional theory (DFT). We also used the Quasi-Harmonic Debye model implemented in the Gibbs2 code. The exchange-correlation energy of electrons was treated using the generalized gradient approximation (GGA) parameterized by Perdew-Burke and Ernzerhof. The calculation of the pressure and the temperature dependence of the thermodynamic properties of VSb2 material is obtained from that of the electronic structure, within the framework of the Quasi-Harmonic Approximation (QHA). We selected a volumes grid enclosing the equilibrium geometry. At these fixed volumes, the rest of the structural parameters are relaxed and we obtain the energy curve as a function of the volume E(V). The thermodynamic properties such as the primitive cell volume V(Bohr3), the bulk modulus B (GPa), the heat capacities CV(J.mol-1.K-1) and CP(J.mol-1.K-1), the thermal expansion coefficient α (K-1), the Grüneisen parameter γ, and the Debye temperature θD(K) have been studied depending on the temperature (T) in the range [0 ; 500 K], and the pressure (P) in the interval [0 ; 15 GPa]. The increase of the bulk modulus is in agreement with the decrease of the volume, also the volume of the primitive cell and bulk modulus are more sensitive to pressure than to temperature. The thermal expansion is more sensitive at low temperatures than at high temperatures. A specific heat behavior of was found, with a Dulong-Petit limit value of 48.16 J.mol-1.K-1. The effect of the pressure on the Grüneisen parameter is opposite to Debye temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Nowotny, R. Funk, J. Pesl, Kristallchemische Untersuchungen in den Systemen Mn-As, V-Sb, Ti-Sb, Monatshefte für Chem. 82 (1951) 513–525.

DOI: 10.1007/bf00900849

Google Scholar

[2] M. Armbrüster, W. Schnelle, U. Schwarz, Y. Grin, Chemical Bonding in TiSb2 and VSb2: A Quantum Chemical and Experimental Study, Inorg. Chem. 46 (2007) 6319–6328.

DOI: 10.1002/chin.200743003

Google Scholar

[3] S. Malki, L. EL Farh, Structural and electronic properties of VSb2 and FeSb2, Mater. Today Proc. 13 (2019) 991–997.

DOI: 10.1016/j.matpr.2019.04.064

Google Scholar

[4] S. Malki, L. El Farh, First-Principles Investigation on Thermoelectric Properties of VSb2 Material, Int. J. Thermophys. 41 (2020) 58.

DOI: 10.1007/s10765-020-02630-x

Google Scholar

[5] S. Malki, L. EL Farh Ab Initio Study of Optoelectronic Properties of VSb2 Compound, International Journal of Nanoelectronics and MaterialsVolume 13, No. 3, July (2020) 591-600.

Google Scholar

[6] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[7] K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259–273.

DOI: 10.1016/s0927-0256(03)00112-5

Google Scholar

[8] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[9] F. D. Murnaghan, « The Compressibility of Media under Extreme Pressures », Proc. Natl. Acad. Sci. U. S. A., vol. 30, no 9, p.244‑247, sept. (1944).

DOI: 10.1073/pnas.30.9.244

Google Scholar

[10] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57–72.

DOI: 10.1016/j.comphy.2003.12.001

Google Scholar

[11] A. Otero-de-la-Roza, V. Luaña, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data, Comput. Phys. Commun. 182 (2011) 1708–1720.

DOI: 10.1016/j.cpc.2011.04.016

Google Scholar

[12] A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (2011) 2232–2248.

DOI: 10.1016/j.cpc.2011.05.009

Google Scholar

[13] H. Charnock, J.F. Dewey, S.C. Morris, A. Navrotsky, E.R. Oxburgh, R.A. Price, B.J. Skinner, OXFORD MONOGRAPHS ON GEOLOGY AND GEOPHYSICS, (n.d.) 426.

Google Scholar

[14] C. Kettel Introduction to Solid State Physics, 6th Ed. John Wiley & Sons, Inc., New York (1976).

Google Scholar

[15] Petit, A. T., and P. L. Dulong. Study on the measurement of specific heat of solids. Ann. Chim. Phys 10 (1819)395-413.

Google Scholar

[16] T. Wasserrab, Die Temperaturabhiingigkeit des Bandabstandes von eigenleitendem Silizium als thermodynamisches Problem, (n.d.) 9.

DOI: 10.1007/bf01412471

Google Scholar